

IUCLID

Data Set

Existing Chemical : ID: 3319-31-1

CAS No. : 3319-31-1

EINECS Name : tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate

EINECS No. : 222-020-0

TSCA Name : 1,2,4-Benzenetricarboxylic acid, tris(2-ethylhexyl) ester

Molecular Formula : C33H54O6

Producer Related Part

Company : ExxonMobil Biomedical Sciences Inc.

Creation date : 02.11.2000

Substance Related Part

Company : ExxonMobil Biomedical Sciences Inc.

Creation date : 02.11.2000

Memo : ACC Phthalate Esters Panel HPV Testing Group

Printing date : 13.12.2001

Revision date

Date of last Update : 13.12.2001

Number of Pages : 16

1. General Information

ld 3319-31-1 Date 13.12.2001

1.0.1 OECD AND COMPANY INFORMATION

Type : lead organisation

Name : ACC Phthalate Esters Panel HPV Testing Group

Partner : Dr. Marian Stanley

Date

 Street
 : 1300 Wilson Blvd.

 Town
 : 22209 Arlington, VA

 Country
 : United States

 Phone
 : (703) 741-5623

 Telefax
 : (703) 741-6091

Telex

Cedex

Remark : The American Chemistry Council Phthalate Esters Panel sponsoring this

test plan includes the following member companies:

Eastman Chemical Company
ExxonMobil Chemical Company

Sunoco Chemicals Teknor Apex Company

Flag

Critical study for SIDS endpoint

26.10.2001

1.1 GENERAL SUBSTANCE INFORMATION

Substance type : organic Physical status : liquid Purity : % w/w

09.10.2001

1.1.0 DETAILS ON TEMPLATE

Comment This chemical is part of the Trimellitate category. The category includes

the following four CAS numbers: 3319-31-1, 27251-75-8, 53894-23-8 and

67989-23-5.

Remark DESCRIPTION OF THE TRIMELLITATES CATEGORY

The trimellitates comprise a family of chemicals synthesized by esterifying trimellitic anhydride with alcohols with average carbon numbers ranging from approximately C7-C10, in the presence of an acid catalyst. The category includes the four trimellitates: 3319-31-1 (TOTM), 27251-75-8 (TIOTM), 53894-23-8 (TINTM), and 67989-23-5 (DOTM). Trimellitates in this category are all 1,2,4-benzenetricarboxylic acids with side chain ester groups ranging from C8 to C10. The structural formula for trimellitates varies somewhat depending on the isomeric composition of the alcohols used in their manufacture. The specific alcohols used are 2-ethylhexanol (TOTM), iso-octyl alcohol (TIOTM), iso-nonyl alcohol (TINTM), and a mixture of linear and branched decyl (40%) and octyl (60%) alcohols (DOTM).

Trimellitates are colorless to slightly yellow liquids with high boiling points (> 250oC) and low vapor pressures; properties which contribute to their high physical stability. They are readily soluble in most organic solvents and miscible with alcohol, ether and most oils, but essentially insoluble in water. Because of the similarity in structure as well as physicochemical

1. General Information

ld 3319-31-1 **Date** 13.12.2001

properties, the trimellitates were grouped into a single category containing four substances with carboxylic side chain ester groups ranging from C8-

C10.

Flag 09.10.2001 Critical study for SIDS endpoint

1.7 USE PATTERN

Type Category : industrial

: Polymers industry

Remark

Trimellitates are used predominantly as plasticizers for production of flexible PVC. Because of their relatively high molecular weight (>500 g/mole) and bulky structure, they have lower volatility and greater resistance to migration than the corresponding phthalate ester plasticizers.

resistance to migration than the corresponding phthalate ester plasticizers. They are predominantly used in the manufacture of high temperature PVC cables (Wilson, 1996). Since these chemicals are produced in closed systems, there is essentially no occupational exposure to these

substances except at the flexible PVC production facility. Usually, these substances have been already blended to the compound as plasticizer, so it is not expected that downstream users or consumers are directly

exposed to trimellitates.

Flag

Critical study for SIDS endpoint

13.12.2001

(9)

ld 3319-31-1 **Date** 13.12.2001

2.1 MELTING POINT

Value : -46 ° C Remark : pour point

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (4) not assignable

20.12.2000 (7)

Value : 97 ° C

Decomposition : no at ° C

Sublimation : no

Method : other Year : 2000

GLP Test substance

Method : Melting point calculation by MPBPWIN ver. 1.40 using calculation methods

of Joback and Gold and Ogle.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Melting point calculation seems to give erroneously high results for this

class of chemicals.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (3) invalid

16.10.2001 (8)

2.2 BOILING POINT

Value : 541 °C at 1013 hPa

Decomposition: noMethod: otherYear: 2000

GLP Test substance

Method : Boiling point calculation by MPBPWIN ver. 1.40 using calculation method

of Stein and Brown.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

16.10.2001 (8)

2.4 VAPOUR PRESSURE

Value : .000000000525 hPa at 25° C

Decomposition : no

Method other (calculated)

Year : 2000

GLP

Test substance :

Decomposition: no

Method : Vapor pressure calculation by MPBPWIN ver. 1.40 using calculation

method of Grain.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

ld 3319-31-1 **Date** 13.12.2001

16.10.2001 (8)

Value : .133 hPa at 200° C

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (4) not assignable

16.10.2001 (7)

2.5 PARTITION COEFFICIENT

Log pow : 4.35 at 25° C Method other (measured)

Year : 1984 GLP : yes

Test substance : as prescribed by 1.1 - 1.4

Remark : The study was conducted following the methods outlined in the ABC

protocol # A-8003 (revised 6 August, 1984) for CMA Environmental Effects Testing Program with TOTM. 0.4% solutions of TOTM (supplied by CMA) were prepared in n-octanol and 40 ml portions were shaken for 24 hours with 400 ml water. After a 48 hour settling period, aliquots from both phases were drawn to analyse their TOTM concentrations using GC or

HPLC.

Source : Internaltional Speciality Chemicals Ltd. Hythe

FMC Corporation Manchester.

16.10.2001

Log pow : 5.94 at 25° C

Method OECD Guide-line 107 "Partition Coefficient (n-octanol/water), Flask-

shaking Method"

Year : 2000 GLP : yes

Test substance: as prescribed by 1.1 - 1.4

Source : Chemicals Evaluation and Research Institute, Japan Ministry of

International Trade and Industry (1998)

Reliability : (2) valid with restrictions

16.10.2001

Log pow : 11.59 at 25° C Method other (calculated)

Year : 2000

GLP

Test substance

Method : Partition coefficient by LOGKOWWIN ver. 1.65 using an atom/fragment

calculation method of Meylan and Howard.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

30.10.2001

2.6.1 WATER SOLUBILITY

Value : .00005 other: ug/L at 25 ° C

Qualitative

 Pka
 : at 25 ° C

 PH
 : at and ° C

Method : other Year : 2000

GLP :

ld 3319-31-1 Date 13.12.2001

Test substance

Method

: Water solubility calculated using WSKOWWIN ver. 1.36 based on Kow

correlation method of Meylan and Howard.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

30.10.2001

Value : .00039 mg/l at 25 ° C Qualitative : of very low solubility

 Pka
 : at 25 ° C

 PH
 : at and ° C

Method : OECD Guide-line 105 "Water Solubility"

Year : 1998 GLP : yes

Test substance : as prescribed by 1.1 - 1.4

Source : Chemicals Evaluation and Research Institute, Japan

Ministry of International Trade and Industry (1998)

16.10.2001

ld 3319-31-1 Date 13.12.2001

3.1.1 PHOTODEGRADATION

Type : air Light source : Sun light

Light spect. nm

Rel. intensity : 1 based on Intensity of Sunlight

Rel. intensity
Conc. of subst. : at 25 degree C

Indirect photolysis

Sensitizer : OH

Conc. of sens. : 1500000 molecule/cm3

Rate constant .00000000003277 cm3/(molecule*sec)

Degradation % after

Deg. Product

Method : other (calculated)

Year 2000

GLP

Test substance

: Photodegradation rate calculated by AOPWIN ver. 1.89 based on the Method

methods of Atkinson.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (8)

3.1.2 STABILITY IN WATER

Type : abiotic

t1/2 pH4 at degree C

t1/2 pH7 : .3 year at 25 degree C

at degree C t1/2 pH9 Deg. Product : not measured Method : other (calculated)

: 2000 Year

GLP

Test substance

Method : Hydrolysis rate calculated by HYDROWIN ver. 1.67 based on work for EPA

by T. Mill et al.

: EPIWIN is used and advocated by the US EPA for chemical property Remark

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (8)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

fugacity model level I Type

Media other Air (level I) 0 : 0 Water (level I) 97.8 Soil (level I)

Biota (level II / III)

Soil (level II / III)

Method other 2000 Year

7 / 16

ld 3319-31-1 **Date** 13.12.2001

Source

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability

(2) valid with restrictions

20.12.2000

(6)

3.3.2 DISTRIBUTION

Media Method : air - biota - sediment(s) - soil - water: Calculation according Mackay, Level I

Year

: 2000

Result

: Soil - 97.8%

Air - 0.00000364% Water - 0.000000284% Sediment - 2.17%

Suspended sed. - 0.068%

Source

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability

: (2) valid with restrictions

20.12.2000

(6)

3.5 BIODEGRADATION

Type

aerobic

Inoculum

domestic sewage

Concentration

10mg/l related to Test substance

related to

Contact time

28 day

Degradation Result

ca. 68.3 - 71.1 % after readily biodegradable

Deg. Product

•

Method Year

: other : 1985

GLP Test substance yes as prescribed by 1.1 - 1.4

Method

Method/Guideline-USEPA 1982, CO2 Evolution, Shake Flask.

Domestic sewage, mixed liquor.

Kinetics-Not Reported

Degradation Products-Not Reported

Analytical Monitoring-No

Result

The results of the first and third test are reported (68.3 and 71.1%

biodegrdation respectively).

Test condition

Inoculum consisted of deionized water, mineral stocks, native soil, aerated mixed liquor and raw sewage. Inoculum was aged prior to test initiation. The test chemicals were added to flasks containing medium and inoculum. The flask were incubated and shaken in the dark for 28 days. Twelve flasks were prepared; 3 controls, 3 dextrose, 3 test substance and 3 with test substance and HgCl2 (to prevent microbial growth). The CO2

production was captured in KOH solution.

500ml Erlenmeyer flasks were used as test vessels. Test flasks were shaken at a rate of 60rpm at 25 +/- 2 deg C. Plate count at initiation was 1.7 x 105 colony/ml. The pH at initiation was not reported.

Three test trials were conducted. The methods described are those of trial #3.

Test substance

Nominal test concentration for all substances = 10mg/L Tris (2-ethylhexyl) Trimellitate (CAS# 3319-31-1)

(1,2,-benzenedicarboxylic acid, Tris (2-ethylhexyl) Ester)

8 / 16

id 3319-31-1 Date 13.12.2001

Synonym: TOTM

: The substance is readily biodegradable using mixed populations of Conclusion

microorganisms,

: (2) valid with restrictions Reliability

Flag 29.11.2000 : Critical study for SIDS endpoint

(1)

4. Ecotoxicity

ld 3319-31-1 Date 13.12.2001

4.1 ACUTE/PROLONGED TOXICITY TO FISH

See attached TOTM SIAR document

4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES

See attached TOTM SIAR document

4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

See attached TOTM SIAR document

5. Toxicity

Id 3319-31-1 Date 13,12,2001

5.1.1 ACUTE ORAL TOXICITY

Type LD50 **Species** rat Strain

Sex : male Number of animals 20 Vehicle : other

Value : > 3200 mg/kg bw

Method : other Year : 1971 **GLP** : no : other TS Test substance

Method : Rats and mice

Remark : No animals died. All animals gained weight post-exposure

Test condition : Two male rats and two male mice per dose level were treated with 200, 400, 800, 1600, or 3200 mg/kg neat test substance by oral gavage. The

animals were observed for a period of 14 days for survival and body weight changes.

Test substance : 1,2,4-benzenetricarboxylic, tris(2-ethylhexyl)ester (tri-2-ethylhexyl)

trimellitate)

: (2) valid with restrictions Reliability

28.12.2000 (4)

5.1.2 ACUTE INHALATION TOXICITY

LC50 Type **Species** rat Strain

Sex no data Number of animals 3

Vehicle Exposure time : 6 hour(s) Value ca.

Method other Year 1971 **GLP** : no Test substance other TS

Three rats were exposed for 6 hours to a nominal concentration of 4.17, Remark 2.64, or 0.23 mg/L of the test substance in a whole-body inhalation

chamber. The test substance was heated to 180oC to generate the test atmosphere which was likely a mixture of aerosol and heated vapor. The

animals were observed for a period of 14 days for survival.

Test condition 1,2,4-benzenetricarboxylic, tris(2-ethylhexyl)ester (tri-2-ethylhexyl

trimellitate)

Test substance Three rats were exposed for 6 hours to a nominal concentration of 4.17,

> 2.64, or 0.23 mg/L of the test substance in a whole-body inhalation chamber. The test substance was heated to 180oC to generate the test atmosphere which was likely a mixture of aerosol and heated vapor. The

animals were observed for a period of 14 days for survival.

Conclusion 100% mortality at >2.64 mg/L (nominal). LC50 not determined.

Reliability (2) valid with restrictions

28.12.2000 (5)

5.1.3 ACUTE DERMAL TOXICITY

5. Toxicity Id 3319-31-1 Date 13.12.2001

Type LD50 Species quinea pig

Strain

Sex no data Number of animals 3 Vehicle other

Value > 20 ml/kg bw

Method

Year

GIP : no Test substance : other TS

No animals died. Moderate to severe edema and moderate erythema were Remark

observed at 24 hours. All animals appeared normal after one week.

Test condition Three guinea pigs were shaved and depilated prior to dosing. Dose levels

of 5, 10, or 20 ml/kg of the neat test substance were applied to the skin (one animal per dose level) and the area wrapped with an impervious material for 24 hours. Following unwrapping, the skin was evaluated for signs of irritation. The animals were observed for a period of 14 days for

(3)

survival.

other

Test substance 1,2,4-benzenetricarboxylic, tris(2-ethylhexyl)ester (tri-2-ethylhexyl

trimellitate)

Conclusion Under the conditions of this study, the test substance has a low order of

acute dermal toxicity in rats.

Reliability (2) valid with restrictions

28.12.2000

5.4 REPEATED DOSE TOXICITY

Species : rat

Sex

Strain : Fischer 344 Route of admin. : oral feed Exposure period : 28 days Frequency of : Daily

treatment

Post obs. period No

Doses 0, 0.2, 0.67 or 2.0% (0, 183, 654, 1734 mg/kg/day

Control group yes = .67 % **NOAEL**

Method OECD Guide-line 407 "Repeated Dose Oral Toxicity - Rodent: 28-day or

14-d Study"

Year 1985 **GLP** ves Test substance other TS

Analysis of variance with significant groups compared by Least Significant Method

Difference test (p < 0.05)

Remark There were no statistically significant differences between the body weights

of control and treated animals. Initially, there was a significant decrease in food intake for females (2%); however, food intake gradually increased throughout the study. In males, there were no treatment-related effects on food consumption. Serum albumin levels were significantly increased in males and females at the mid and high dose. Similarly, leukocyte counts were increased in both sexes at the two higher dose levels; however, this increase was significant only in males. At the two lower dose levels, hematocrit and mean cell volume decreased in female rats. In both sexes. the absolute and relative liver weights increased at the mid-dose level, but not at the highest dose. The high dose animals showed slight increases in the number but not size of peroxisomes. There were no deaths related to

treatment in this study.

5. Toxicity

ld 3319-31-1 **Date** 13.12.2001

Test condition

: Male and female rats were randomly assigned to various treatment groups. Following the acclimation period, rats were administered dietary doses of either the control or the test substance for 28 days. DEHP was used in this study as a reference compound. Animals were monitored twice each day. Food intake was measured from Days -3 to day 0 and continuous intakes were measured at twice-weekly intervals until the day preceding the autopsy. One day prior to autopsy, blood was collected from each animal and the following endpoints were evaluated: differential leukocyte and erythrocyte counts, mean cell volume, packed cell volume, total leukocyte count, platelet count and reticulocyte count. Serum chemistry analysis of several endpoints was also performed. On the day of sacrifice, the following organs were retained in 10% neutral buffered formalin: cecum, colon, pancreas, prostate, skeletal muscle, small intestine, stomach, thymus, and uterus. Two slices of liver were subjected to electron microscopy for evaluation of peroxisome proliferation.

Test substance

: 1,2,4-benzenetricarboxylic, tris(2-ethylhexyl)ester (tri-2-ethylhexyl

trimellitate)

Conclusion

: The test substance caused a slight peroxisome proliferation at the high

dose but was less potent than comparable doses of DEHP.

Reliability 28.12.2000

: (1) valid without restriction

5.5 GENETIC TOXICITY 'IN VITRO'

Type : Ames test System of testing : Bacterial

Concentration : 100, 333, 1000, 3333, 10000 mg/ml.

Cycotoxic conc.

Metabolic activation: with and without

Result : negative

Method : OECD Guide-line 471 "Genetic Toxicology: Salmonella thyphimurium

Reverse Mutation Assay"

Year : 1988 GLP : yes Test substance : other TS

Method : Chemicals were judged to be mutagenic if the test results produced a

dose-related, reproducible increase in histidine revertants over control. It was not a requirement for mutagenic responses to reach two-fold over

background.

Test condition : Prior to assay initiation, a toxicity pretest was performed using tester strain

TA100. Based on these results, the doses for the final assay were

determined. In the definitive assay, each of the five strains was dosed with either the test substance; a vehicle control (DMSO); or a nontreated control and a positive control. The test mixture containing the tester strain and test substance with or without S9 was added to the surface of petri dishes containing Vogel-Bonner medium. The histidine-independent colonies that formed on the plates were counted following a two-day incubation at 37°C. Positive controls were as follows: 2-aminoanthracene (all strains with S9); sodium azide (without S9, TA1535, TA100), 4-nitro-o-phenylenediamine (without S9, TA98) and 9-aminoacridine (without S9, TA 97, TA1537). There were 3 plates/dose group/strain/treatment. The test results were

verified by repeating the assay. If the results were negative, they were

(2)

repeated first without S9 and then with 30% S9.

Test substance : 1,2,4-benzenetricarboxylic, tris(2-ethylhexyl)ester (tri-2-ethylhexyl

trimellitate)

Conclusion : Under the conditions of this study, tri (2-ethylhexyl) trimellitate was not

mutagenic at doses up to 10,000 mg/ml.

Reliability : (1) valid without restriction

28.12.2000

5. Toxicity

ld 3319-31-1 **Date** 13.12.2001

5.8 TOXICITY TO REPRODUCTION

See attached TOTM SIAR document

5.9 DEVELOPMENTAL TOXICITY/TERATOGENICITY

See attached TOTM SIAR document

5.10 OTHER RELEVANT INFORMATION

See attached TOTM SIAR document

6. References Id 3319-31-1 Date 13.12.2001

- (1) ABC Final Report, # 31891, Shake Flask Biodegradation of 14C-Tris (2-ethylhexyl) Trimellitate (TOTM). 1986, Sponsored by CMA. Performed by: ABC Laboratories Columbia, MO.
- (2) E. Zeiger, B. Anderson, S. Haworth, T. Lawlor and K. Mortelmans. (1988). Salmonella mutagenicity tests. IV. Results from the testing of 300 chemicals. Environmental and Molecular Mutagenesis 11(12):1-158.
- (3) Eastman Kodak Company (1971). Tri(2-ethylhexyl)trimellitate. Acute dermal toxicity. Unpublished report.
- (4) Eastman Kodak Company (1971). Tri(2-ethylhexyl)trimellitate. Acute oral toxicity. Unpublished report.
- (5) Eastman Kodak Company (1971). Tri(2-ethylhexyl)trimellitate. Acute inhalation toxicity. Unpublished report.
- (6) Mackay, D., A. DiGuardo, S. Paterson and C. Cowan, EQC Model ver. 1.01, 1997, available form the Emvironmental Centre, Trent Univ. Canada.
- (7) Manufacturer Safety Data Sheet
- (8) Meylan, M. Syracuse Research Corporation (1994-1999) Calculation program contained in EPIWIN (Esitmate ver. 3.04) available from SRC.
- (9) Wilson, A., (1996). Plasticizers Selection, Applications and Implications. Rapra Review Reports 8:15-16.

7. Risk Assessment

ld 3319-31-1 Date 13.12.2001

7.2 HAZARD SUMMARY

Chapter Remark

: Chapters 4 & 5

Because of the similarity in chemical structure, the Panel believes that the toxicological properties of the substances in this category will be similar as well. Thus, the Panel considers that the data for the best tested member of this category, tris-2-(ethylhexyl) trimellitate (TOTM), also represents the potential for human and environmental effects of the other members of this category.

TOTM has been sponsored under the OECD SIDS program through ICCA. A review of the available data for TOTM (see attached Table) indicates that all endpoints have been adequately addressed, and that TOTM exhibits a low order of toxicity.

Due to their higher molecular weight and bulky side chains, the remaining members of this category are expected to demonstrate a lower order of toxicity than TOTM. This is supported by a similar structural-activity relationship observed with phthalate ester compounds, i.e., the higher molecular weight phthalates (ester side chains >C7) are less active that the transitional phthalates (ester side chains C4-C6). Thus, the use of TOTM to represent the potential hazards of the other category members is a

conservative position.

Attached doc.

Summary of SIDS Information on Trimellitates.doc

Flag

Critical study for SIDS endpoint

13.12.2001

7.3 RISK ASSESSMENT

Memo

: SIDS Initial Assessment Profile (SIAP), SIDS Initial Assessment Report (SIAR) and Robust Summary for TOTM -- submitted by Japan under ICCA

HPV program.

Attached doc.

TOTM SIAR.pdf

Flaα

13.12.2001

Critical study for SIDS endpoint

IUCLID

Data Set

Existing Chemical

: ID: 27251-75-8

CAS No.

: 27251-75-8

TSCA Name

: 1,2,4-benzenetricarboxcylic acid, triisooctyl ester

Generic name

: triisooctyl ester trimellitate

Producer Related Part

Company

: ExxonMobil Biomedical Sciences Inc.

Creation date

: 26.10.2000

Substance Related Part

Company

: ExxonMobil Biomedical Sciences Inc.

Creation date : 26.10.2000

Memo

: ACC Phthalate Esters HPV Panel

Printing date

: 13.12.2001

Revision date

.

Date of last Update

: 30.10.2001

Number of Pages

: 11

1. General Information

ld 27251-75-8 **Date** 13.12.2001

1.0.1 OECD AND COMPANY INFORMATION

Type : lead organisation

Name : ACC Phthalate Esters Panel HPV Testing Group

Partner : Dr. Marian Stanley

Date

 Street
 : 1300 Wilson Blvd.

 Town
 : 22209 Arlington, VA

 Country
 : United States

 Phone
 : (703) 741-5623

 Telefax
 : (703) 741-6091

Telex

Cedex

Remark : The American Chemistry Council Phthalate Esters Panel sponsoring this

test plan includes the following member companies:

Eastman Chemical Company
ExxonMobil Chemical Company

Sunoco Chemicals Teknor Apex Company

Flag : Critical study for SIDS endpoint

26.10.2001

1.1 GENERAL SUBSTANCE INFORMATION

Substance type : organic
Physical status : liquid
Purity : % w/w

09.10.2001

1.1.0 DETAILS ON TEMPLATE

Comment This chemical is part of the Trimellitate category. The category includes

the following four CAS numbers: 3319-31-1, 27251-75-8, 53894-23-8 and

67989-23-5.

Remark DESCRIPTION OF THE TRIMELLITATES CATEGORY

The trimellitates comprise a family of chemicals synthesized by esterifying trimellitic anhydride with alcohols with average carbon numbers ranging from approximately C7-C10, in the presence of an acid catalyst. The category includes the four trimellitates: 3319-31-1 (TOTM), 27251-75-8

(TIOTM),

53894-23-8 (TINTM), and 67989-23-5 (DOTM). Trimellitates in this category are all 1,2,4-benzenetricarboxylic acids with side chain ester groups ranging from C8 to C10. The structural formula for trimellitates varies somewhat depending on the isomeric composition of the alcohols used in their manufacture. The specific alcohols used are 2-ethylhexanol (TOTM), iso-octyl alcohol (TIOTM), iso-nonyl alcohol (TINTM), and a mixture of linear and branched decyl (40%) and octyl (60%) alcohols (DOTM).

Trimellitates are colorless to slightly yellow liquids with high boiling points (> 250oC) and low vapor pressures; properties which contribute to their high physical stability. They are readily soluble in most organic solvents and miscible with alcohol, ether and most oils, but essentially insoluble in

1. General Information

ld 27251-75-8 Date 13.12.2001

water. Because of the similarity in structure as well as physicochemical properties, the trimellitates were grouped into a single category containing four substances with carboxylic side chain ester groups ranging from C8-

Fiag 09.10.2001 Critical study for SIDS endpoint

1.7 **USE PATTERN**

Type Category : industrial

Remark

: Polymers industry

: Trimellitates are used predominantly as plasticizers for production of flexible PVC. Because of their relatively high molecular weight (>500 g/mole) and bulky structure, they have lower volatility and greater

resistance to migration than the corresponding phthalate ester plasticizers. They are predominantly used in the manufacture of high temperature PVC cables (Wilson, 1996). Since these chemicals are produced in closed systems, there is essentially no occupational exposure to these

substances except at the flexible PVC production facility. Usually, these substances have been already blended to the compound as plasticizer, so it is not expected that downstream users or consumers are directly

exposed to trimellitates.

Flag 13.12.2001 Critical study for SIDS endpoint

(3)

ld 27251-75-8 **Date** 13.12.2001

2.1 MELTING POINT

Value : = 197 ° C Decomposition : no at ° C

Sublimation: noMethod: otherYear: 2000

GLP Test substance

Method : Melting point calculation by MPBPWIN ver. 1.40 using calculation methods

of Joback and Gold and Ogle.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation.

Melting point calculation seems to give erroneously high results for the this

class of chemicals.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (3) invalid

29.10.2001 (2)

2.2 BOILING POINT

Value : = 541 ° C at 1013 hPa

Decomposition : no Method : other Year : 2000

GLP

Test substance

Method : Boiling point calculation by MPBPWIN ver. 1.40 using calculation method

of Stein and Brown.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

29.10.2001 (2)

2.4 VAPOUR PRESSURE

Value : = .000000000524 hPa at 25° C

Decomposition : no

Method other (calculated)

Year : 2000

GLP

Test substance :

Decomposition : n

Method : Vapor pressure calculation by MPBPWIN ver. 1.40 using calculation

method of Grain.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

29.10.2001 (2)

ld 27251-75-8 Date 13.12.2001

2.5 **PARTITION COEFFICIENT**

Log pow Method

 $: = 11.59 \text{ at } 25^{\circ} \text{ C}$ other (calculated)

Year

2000

GLP

Test substance

Method

Partition coefficient by LOGKOWWIN ver. 1.65 using an atom/fragment

calculation method of Meylan and Howard.

Remark

: EPIWIN is used and advocated by the US EPA for chemical property

estimation.

Source

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability

: (2) valid with restrictions

29.10.2001

(2)

2.6.1 WATER SOLUBILITY

Value

Method

.00005 other: ug/L at 25 ° C

Qualitative

Pka PH

at 25 ° C at and °C other: calculated

Year 2000

GLP

Test substance

Method Water solubility calculated using WSKOWWIN ver. 1.36 based on Kow

correlation method of Meylan and Howard.

: EPIWIN is used and advocated by the US EPA for chemical property Remark

estimation.

Source ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability (2) valid with restrictions

30.10.2001

ld 27251-75-8 Date 13.12.2001

3.1.1 PHOTODEGRADATION

: air Type Light source : Sun light
Light spect. : nm
Rel. intensity : 1 based on Inte
Conc. of subst. : at 25 degree C
Indirect photolysis

: 1 based on Intensity of Sunlight

Sensitizer : OH

Conc. of sens. : 1500000 molecule/cm3

Rate constant : .00000000003068 cm3/(molecule*sec)

Degradation Deg. Product % after : not measured Method : other (calculated)

2000 Year

GLP

Test substance Method : Photodegradation rate calculated by AOPWIN ver. 1.89 based on the

methods of Atkinson.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA Source

Reliability : (2) valid with restrictions

29.10.2001 (2)

3.1.2 STABILITY IN WATER

Type : abiotic

t1/2 pH4 at degree C

t1/2 pH7 : .4 year at 25 degree C

t1/2 pH9 at degree C Deg. Product : not measured Method : other (calculated)

Year 2000

GLP

Test substance

Method : Hydrolysis rate calculated by HYDROWIN ver. 1.67 based on work for EPA

by T. Mill et al.

: EPIWIN is used and advocated by the US EPA for chemical property Remark

estimation.

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA Source

Reliability : (2) valid with restrictions

29.10.2001 (2)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

fugacity model level I Type

Media other Air (level I) : 0 Water (level I) : 0 Soil (level I) : 97.8 Biota (level II / III)

Soil (level II / III)

Method other Year 2000

6/11

ld 27251-75-8

Date 13.12.2001

Source

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability

: (2) valid with restrictions 20.12.2000

(1)

3.3.2 DISTRIBUTION

Media Method : air - biota - sediment(s) - soil - water : Calculation according Mackay, Level I

Year

2000

Result

: Soil - 97.8%

Air - 0.00000364% Water - 0.000000284% Sediment - 2.17%

Suspended sed. - 0.068%

Source

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability

: (2) valid with restrictions

20.12.2000

(1)

4. Ecotoxicity

Id 27251-75-8

Date 13.12.2001

- 4.1 ACUTE/PROLONGED TOXICITY TO FISH
- 4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES
- 4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

5. Toxicity

ld 27251-75-8

Date 13.12.2001

- 5.1.1 ACUTE ORAL TOXICITY
- 5.1.2 ACUTE INHALATION TOXICITY
- 5.1.3 ACUTE DERMAL TOXICITY
- 5.4 REPEATED DOSE TOXICITY
- 5.5 GENETIC TOXICITY 'IN VITRO'
- 5.8 TOXICITY TO REPRODUCTION
- 5.9 DEVELOPMENTAL TOXICITY/TERATOGENICITY

6. References

ld 27251-75-8

Date 13.12.2001

(1) Mackay, D., A. DiGuardo, S. Paterson and C. Cowan, EQC Model ver. 1.01, 1997, available form the Emvironmental Centre, Trent Univ. Canada.

- (2) Meylan, M. Syracuse Research Corporation (1994-1999) Calculation program contained in EPIWIN (Esitmate ver. 3.04) available from SRC.
- (3) Wilson, A., (1996). Plasticizers Selection, Applications and Implications. Rapra Review Reports 8:15-16.

7. Risk Assessment

ld 27251-75-8 **Date** 13.12.2001

7.1 END POINT SUMMARY

7.2 HAZARD SUMMARY

Chapter Remark : Chapters 4 & 5

: Because of the similarity in chemical structure, the Panel believes that the toxicological properties of the substances in this category will be similar as well. Thus, the Panel considers that the data for the best tested member of this category, tris-2-(ethylhexyl) trimellitate (TOTM), also represents the potential for human and environmental effects of the other members of this category.

TOTM has been sponsored under the OECD SIDS program through ICCA. A review of the available data for TOTM (see attached Table) indicates that all endpoints have been adequately addressed, and that TOTM exhibits a low order of toxicity.

Due to their higher molecular weight and bulky side chains, the remaining members of this category are expected to demonstrate a lower order of toxicity than TOTM. This is supported by a similar structural-activity relationship observed with phthalate ester compounds, i.e., the higher molecular weight phthalates (ester side chains >C7) are less active that the transitional phthalates (ester side chains C4-C6). Thus, the use of TOTM to represent the potential hazards of the other category members is a conservative position.

Attached doc.

Summary of SIDS Information on Trimellitates.doc

Flag

Critical study for SIDS endpoint

13.12.2001

7.3 RISK ASSESSMENT

IUCLID

Data Set

Existing Chemical : ID: 53894-23-8
CAS No. : 53894-23-8
EINECS Name : triisononyl benzene-1,2,4-tricarboxylate
EINECS No. : 258-847-9
TSCA Name : 1,2,4-Benzenetricarboxylic acid, triisononyl ester
Molecular Formula : C36H60O6

Producer Related Part

: ExxonMobil Biomedical Sciences Inc. Company : Exxonivious: 02.11.2000

Creation date

Substance Related Part

Company : ExxonMobil Biomedical Sciences Inc.
Creation date : 02.11.2000

: ACC Phthalate Esters Panel HPV Testing Group Memo

: 15.03.2002

Revision date

Date of last Update : 30.10.2001

Number of Pages : 11

Chapter (profile) Reliability (profile) Flags (profile)

1. General Information

ld 53894-23-8 **Date** 15.03.2002

1.0.1 OECD AND COMPANY INFORMATION

Type : lead organisation

Name : ACC Phthalate Esters Panel HPV Testing Group

Partner : Dr. Marian Stanley

Date

Street : 1300 Wilson Blvd.
Town : 22209 Arlington, VA
Country : United States

 Phone
 : (703) 741-5623

 Telefax
 : (703) 741-6091

Telex

Cedex

Remark : The American Chemistry Council Phthalate Esters Panel sponsoring this

test plan includes the following member companies:

Eastman Chemical Company ExxonMobil Chemical Company

Sunoco Chemicals Teknor Apex Company

Flag : Critical study for SIDS endpoint

26.10.2001

1.1 GENERAL SUBSTANCE INFORMATION

Substance type : organic
Physical status : liquid
Purity : % w/w

09.10.2001

1.1.0 DETAILS ON TEMPLATE

Comment This chemical is part of the Trimellitate category. The category includes

the following four CAS numbers: 3319-31-1, 27251-75-8, 53894-23-8 and

67989-23-5.

Remark DESCRIPTION OF THE TRIMELLITATES CATEGORY

The trimellitates comprise a family of chemicals synthesized by esterifying trimellitic anhydride with alcohols with average carbon numbers ranging from approximately C7-C10, in the presence of an acid catalyst. The category includes the four trimellitates: 3319-31-1 (TOTM), 27251-75-8

(TIOTM),

53894-23-8 (TINTM), and 67989-23-5 (DOTM). Trimellitates in this category are all 1,2,4-benzenetricarboxylic acids with side chain ester groups ranging from C8 to C10. The structural formula for trimellitates varies somewhat depending on the isomeric composition of the alcohols used in their manufacture. The specific alcohols used are 2-ethylhexanol (TOTM), iso-octyl alcohol (TIOTM), iso-nonyl alcohol (TINTM), and a mixture of linear and branched decyl (40%) and octyl (60%) alcohols (DOTM).

Trimellitates are colorless to slightly yellow liquids with high boiling points (> 250oC) and low vapor pressures; properties which contribute to their high physical stability. They are readily soluble in most organic solvents and miscible with alcohol, ether and most oils, but essentially insoluble in

1. General Information

ld 53894-23-8

Date 15.03.2002

water. Because of the similarity in structure as well as physicochemical properties, the trimellitates were grouped into a single category containing four substances with carboxylic side chain ester groups ranging from C8-

Flag 09.10.2001 Critical study for SIDS endpoint

1.7 **USE PATTERN**

Type

: industrial

Category Remark

Polymers industry

: Trimellitates are used predominantly as plasticizers for production of flexible PVC. Because of their relatively high molecular weight (>500

g/mole) and bulky structure, they have lower volatility and greater resistance to migration than the corresponding phthalate ester plasticizers. They are predominantly used in the manufacture of high temperature PVC

cables (Wilson, 1996). Since these chemicals are produced in closed systems, there is essentially no occupational exposure to these

substances except at the flexible PVC production facility. Usually, these substances have been already blended to the compound as plasticizer, so it is not expected that downstream users or consumers are directly

exposed to trimellitates.

Flag 13.12.2001 Critical study for SIDS endpoint

(5)

ld 53894-23-8 Date 15.03.2002

2.1 MELTING POINT

Value : 224 ° C Sublimation : no Method : other

Year : 2000

GLP Test substance

Method : Melting point calculation by MPBPWIN ver. 1.40 using calculation methods

of Joback and Gold and Ogle.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Melting point calculation seems to give erroneously high results for the

thhis class of chemicals.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (3) invalid

10.10.2001 (4)

2.2 BOILING POINT

Value : 575 ° C at 1013 hPa

Decomposition: noMethod: otherYear: 2000

GLP

Test substance

Method : Boiling point calculation by MPBPWIN ver. 1.40 using calculation method

of Stein and Brown.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

10.10.2001 (4)

2.4 VAPOUR PRESSURE

Value : 0.000000000032 hPa at 25° C

no

Decomposition : no

Method other (calculated)

Year : 2000

GLP :

Test substance : Decomposition :

Method : Vapor pressure calculation by MPBPWIN ver. 1.40 using calculation

method of Grain.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

10.10.2001 (4)

Value : .13 hPa at 200° C

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (4) not assignable

20.12.2000 (3)

ld 53894-23-8 Date 15.03.2002

2.5 PARTITION COEFFICIENT

Log pow : 13.06 at 25° C Method other (calculated)

Year : 2000

GLP

Test substance

Method : Partition coefficient by LOGKOWWIN ver. 1.65 using an atom/fragment

calculation method of Meylan and Howard.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (4)

2.6.1 WATER SOLUBILITY

Value : 0.00132 other: ng/l at 25 ° C

Qualitative

Pka : at 25 ° C

PH : at and °C

Method: otherYear: 2000

GLP

Test substance

Method : Water solubility calculated using WSKOWWIN ver 1.36 based on Kow

correlation method of Meylan and Howard

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

10.10.2001 (4)

ld 53894-23-8 Date 15.03.2002

3.1.1 PHOTODEGRADATION

Type : air

Light source : Sun light Light spect. : nm

Rel. intensity : 1 based on Intensity of Sunlight

Conc. of subst. : at 25 degree C

Indirect photolysis

Sensitizer : OH

Conc. of sens. : 1500000 molecule/cm3

Rate constant : .0000000000349 cm3/(molecule*sec)

Degradation: % after

Method : Photodegradation rate calculated by AOPWIN ver. 1.89 based on the

methods of Atkinson.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (4)

3.1.2 STABILITY IN WATER

Type : abiotic

t1/2 pH4 : at degree C

t1/2 pH7 : .9 year at 25 degree C

t1/2 pH9 : at degree C
Deg. Product : not measured
Method : other (calculated)

Year : 2000

GLP

Test substance

Method : Hydrolysis rate calculated by HYDROWIN ver. 1.67 based on work for EPA

by T. Mill et al.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (4)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type : fugacity model level I

 Media
 : other

 Air (level I)
 : 0

 Water (level I)
 : 0

 Soil (level I)
 : 97.8

Biota (level II / III)
Soil (level II / III)
Method

Year : 2000

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (2)

ld 53894-23-8 **Date** 15.03.2002

3.3.2 DISTRIBUTION

Media Method : air - biota - sediment(s) - soil - water: Calculation according Mackay, Level I

Year

: 2000

Result

: Soil - 97.8%

Air - 0.000000274% Water - 0.00000000961%

Sediment - 2.17%

Suspended sed. - 0.068%

Source

: ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability

: (2) valid with restrictions

20.12.2000

(2)

4. Ecotoxicity

ld 53894-23-8 **Date** 15.03.2002

- 4.1 ACUTE/PROLONGED TOXICITY TO FISH
- 4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES
- 4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

5. Toxicity

ld 53894-23-8 Date 15.03.2002

5.1.1 ACUTE ORAL TOXICITY

Type LD50 **Species** rat

Strain Sprague-Dawley

Sex male Number of animals 20 Vehicle no data

Value > 10000 mg/kg bw

Method : other Year 1969 **GLP** : no Test substance other TS

Remark : No rats died during the study. At the two higher dose levels, decreased

activity was observed one hour after dosing. Excessive urination and/or diarrhea were initially observed but decreased by 48 hours (5000 mg/kg

level) or by Day 5 (10,000 mg/kg level).

Test condition : Immediately following a 3-4 hour fasting period, animals were administered

the test compound at doses of 417, 1450, 5000 and 10000 mg/kg of body weight. Observations were recorded immediately after dosing, then at 1, 4 and 24 hours; and once daily thereafter for 14 days. Gross necropsies were conducted on all animals that were sacrificed at the termination of the

study.

: 1,2,4-benzenetricarboxylic acid, triisononyl ester (triisononyl phthalate) Test substance Conclusion

: Under the conditions of this study, the test material has a low order of

acute oral toxicity.

: (2) valid with restrictions Reliability

: Critical study for SIDS endpoint Flag

28.12.2000 (1)

- 5.4 REPEATED DOSE TOXICITY
- 5.5 **GENETIC TOXICITY 'IN VITRO'**
- 5.6 **GENETIC TOXICITY 'IN VITRO'**
- 5.8 **TOXICITY TO REPRODUCTION**
- 5.9 **DEVELOPMENTAL TOXICITY/TERATOGENICITY**

6. References Id 53894-23-8 Date 15.03.2002

(1) Esso Research and Engineering Company (1969). Acute Oral Administration in Rats. Unpublished Report. Esso Research and Engineering Company (1969). Acute Oral Administration in Rats. Unpublished Report.

- (2) Mackay, D., A. DiGuardo, S. Paterson and C. Cowan, EQC Model ver. 1.01, 1997, available form the Emvironmental Centre, Trent Univ. Canada.
- (3) Manufacturer Safety Data Sheet
- (4) Meylan, M. Syracuse Research Corporation (1994-1999) Calculation program contained in EPIWIN (Esitmate ver. 3.04) available from SRC.
- (5) Wilson, A., (1996). Plasticizers Selection, Applications and Implications. Rapra Review Reports 8:15-16.

7. Risk Assessment

ld 53894-23-8

Date 15.03.2002

7.1 END POINT SUMMARY

7.2 HAZARD SUMMARY

Chapter Remark : Chapters 4 & 5

: Because of the similarity in chemical structure, the Panel believes that the

toxicological properties of the substances in this category will be similar as well. Thus, the Panel considers that the data for the best tested member of this category, tris-2-(ethylhexyl) trimellitate (TOTM), also represents the potential for human and environmental effects of the other members of this

category.

TOTM has been sponsored under the OECD SIDS program through ICCA. A review of the available data for TOTM (see attached Table) indicates that all endpoints have been adequately addressed, and that TOTM exhibits a

low order of toxicity.

Due to their higher molecular weight and bulky side chains, the remaining members of this category are expected to demonstrate a lower order of toxicity than TOTM. This is supported by a similar structural-activity relationship observed with phthalate ester compounds, i.e., the higher molecular weight phthalates (ester side chains >C7) are less active that the transitional phthalates (ester side chains C4-C6). Thus, the use of TOTM to represent the potential hazards of the other category members is a

conservative position.

Attached doc.

Summary of SIDS Information on Trimellitates.doc

Flag

13.12.2001

Critical study for SIDS endpoint

7.3 RISK ASSESSMENT

IUCLID

Data Set

Existing Chemical: ID: 67989-23-5

CAS No. : 67989-23-5

EINECS Name : 1,2,4-Benzenetricarboxylic acid, decyl octyl ester

EINECS No. : 268-007-3

TSCA Name : 1,2,4-Benzenetricarboxylic acid, decyl octyl ester

Molecular Formula : C10H22O.xC9H6O6.xC8H18O

Producer Related Part

Company : ExxonMobil Biomedical Sciences Inc.

Creation date : 02.11.2000

Substance Related Part

Company: ExxonMobil Biomedical Sciences Inc.

Creation date : 02.11.2000

Memo : ACC Phthalate Esters Panel HPV Testing Group

Printing date : 13.12.2001

Revision date

Date of last Update : 30.10.2001

Number of Pages : 11

Chapter (profile) : Reliability (profile) : Flags (profile) :

1. General Information

ld 67989-23-5 **Date** 13.12.2001

1.0.1 OECD AND COMPANY INFORMATION

Type : lead organisation

Name : ACC Phthalate Esters Panel HPV Testing Group

Partner : Dr. Marian Stanley

Date

 Street
 : 1300 Wilson Blvd.

 Town
 : 22209 Arlington, VA

 Country
 : United States

 Phone
 : (703) 741-5623

 Telefax
 : (703) 741-6091

Telex

Cedex

Remark : The American Chemistry Council Phthalate Esters Panel sponsoring this

test plan includes the following member companies:

Eastman Chemical Company ExxonMobil Chemical Company

Sunoco Chemicals Teknor Apex Company

Flag 26.10.2001 Critical study for SIDS endpoint

1.1 GENERAL SUBSTANCE INFORMATION

Substance type Physical status

: organic : liquid : % w/w

Purity 09.10.2001

1.1.0 DETAILS ON TEMPLATE

Comment This chemical is part of the Trimellitate category. The category includes

the following four CAS numbers: 3319-31-1, 27251-75-8, 53894-23-8 and

67989-23-5.

Remark DESCRIPTION OF THE TRIMELLITATES CATEGORY

The trimellitates comprise a family of chemicals synthesized by esterifying trimellitic anhydride with alcohols with average carbon numbers ranging from approximately C7-C10, in the presence of an acid catalyst. The category includes the four trimellitates: 3319-31-1 (TOTM), 27251-75-8

(TIOTM),

53894-23-8 (TINTM), and 67989-23-5 (DOTM). Trimellitates in this category are all 1,2,4-benzenetricarboxylic acids with side chain ester groups ranging from C8 to C10. The structural formula for trimellitates varies somewhat depending on the isomeric composition of the alcohols used in their manufacture. The specific alcohols used are 2-ethylhexanol (TOTM), iso-octyl alcohol (TIOTM), iso-nonyl alcohol (TINTM), and a mixture of linear and branched decyl (40%) and octyl (60%) alcohols

(DOTM).

Trimellitates are colorless to slightly yellow liquids with high boiling points (> 250oC) and low vapor pressures; properties which contribute to their high physical stability. They are readily soluble in most organic solvents and miscible with alcohol, ether and most oils, but essentially insoluble in water. Because of the similarity in structure as well as physicochemical

1. General Information

ld 67989-23-5

Date 13.12.2001

properties, the trimellitates were grouped into a single category containing four substances with carboxylic side chain ester groups ranging from C8-

C10.

Flag

09.10.2001

Critical study for SIDS endpoint

1.7 USE PATTERN

Type

: industrial

Category

Polymers industry

Remark : Trimellitates are used predominantly as plasticizers for production of

flexible PVC. Because of their relatively high molecular weight (>500 g/mole) and bulky structure, they have lower volatility and greater

resistance to migration than the corresponding phthalate ester plasticizers. They are predominantly used in the manufacture of high temperature PVC cables (Wilson, 1996). Since these chemicals are produced in closed

systems, there is essentially no occupational exposure to these

substances except at the flexible PVC production facility. Usually, these substances have been already blended to the compound as plasticizer, so

it is not expected that downstream users or consumers are directly

exposed to trimellitates.

Flag

: Critical study for SIDS endpoint

13.12.2001

(3)

2. Physico-Chemical Data

ld 67989-23-5 **Date** 13.12.2001

2.1 MELTING POINT

Value : 234 ° C Decomposition : no at ° C

Sublimation: noMethod: otherYear: 2000

GLP

Test substance

Method : Melting point calculation by MPBPWIN ver. 1.40 using calculation methods

of Joback and Gold and Ogle.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Melting point calculation seems to give erroneously high results for the

thhis class of chemicals.

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (3) invalid

10.10.2001 (2)

2.2 BOILING POINT

Value : 585 °C at 1013 hPa

Decomposition : no Method : other Year : 2000

GLP

Test substance

Method : Boiling point calculation by MPBPWIN ver. 1.40 using calculation methods

of Stein and Brown.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

10.10.2001 (2)

2.4 VAPOUR PRESSURE

Value : .000000000014 hPa at 25° C

Decomposition : no

Method other (calculated)

Year : 2000

GLP :

Test substance : Decomposition :

Method : Vapor pressure calculation by MPBPWIN ver. 1.40 using calculation

method of Grain.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

15.10.2001 (2)

2. Physico-Chemical Data

ld 67989-23-5 **Date** 13.12.2001

2.5 PARTITION COEFFICIENT

Log pow : 12.79 at 25° C Method other (calculated)

Year : 2000

GLP

Test substance

Method : Partition coefficient by LOGKOWWIN ver. 1.65 using an atom/fragment

calculation method of Meylan and Howard.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (2)

2.6.1 WATER SOLUBILITY

Value : 2.78 other: ng/l at 25 ° C

Qualitative

Method : other Year : 2000

GLP

Test substance

Method : Water solubility calculated using WSKOWWIN ver 1.36 based on Kow

correlation method of Meylan and Howard

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

10.10.2001 (2)

3. Environmental Fate and Pathways

ld 67989-23-5 **Date** 13.12.2001

3.1.1 PHOTODEGRADATION

Type : air
Light source : Sun light
Light spect. : nm

Rel. intensity : 1 based on Intensity of Sunlight

Conc. of subst. : at 25 degree C

Indirect photolysis

Sensitizer : OH

Conc. of sens. : 1500000 molecule/cm3

Rate constant : .0000000000335 cm3/(molecule*sec)

Degradation: % afterDeg. Product: not measuredMethod: other (calculated)

Year : 2000

GLP

Test substance :

Method : Photodegradation rate calculated by AOPWIN ver. 1.89 based on the

methods of Atkinson.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

10.10.2001 (2)

3.1.2 STABILITY IN WATER

Type : abiotic

t1/2 pH4 : at degree C

t1/2 pH7 : 1 year at 25 degree C

t1/2 pH9 : at degree C
Deg. Product : not measured
Method : other (calculated)

Year : 2000

GLP

Test substance

Method : Hydrolysis rate calculated by HYDROWIN ver. 1.67 based on work for EPA

by T. Mill et al.

Remark : EPIWIN is used and advocated by the US EPA for chemical property

estimation

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (2)

3.3.1 TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS

Type : fugacity model level !

 Media
 : other

 Air (level I)
 : 0

 Water (level I)
 : 0

 Soil (level I)
 : 97.8

Biota (level II / III)

Soil (level II / III)

Method : other Year : 2000

6 / 11

3. Environmental Fate and Pathways

ld 67989-23-5 **Date** 13.12.2001

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

15.10.2001 (1)

3.3.2 DISTRIBUTION

Media : air - biota - sediment(s) - soil - water

Method : other (calculation)

Year : 2000 Result : Soil - 97.8%

> Air - 0.000000102% Water - 0.0000000179%

Sediment - 2.17%

Suspended sed. - 0.068%

Source : ExxonMobil Biomedical Sciences, Inc. Annandale, N.J. USA

Reliability : (2) valid with restrictions

20.12.2000 (1)

4. Ecotoxicity

ld 67989-23-5 **Date** 13.12.2001

- 4.1 ACUTE/PROLONGED TOXICITY TO FISH
- 4.2 ACUTE TOXICITY TO AQUATIC INVERTEBRATES
- 4.3 TOXICITY TO AQUATIC PLANTS E.G. ALGAE

5. Toxicity

ld 67989-23-5 **Date** 13.12.2001

- 5.1.1 ACUTE ORAL TOXICITY
- 5.1.2 ACUTE INHALATION TOXICITY
- 5.1.3 ACUTE DERMAL TOXICITY
- 5.4 REPEATED DOSE TOXICITY
- 5.5 GENETIC TOXICITY 'IN VITRO'
- 5.8 TOXICITY TO REPRODUCTION
- 5.9 DEVELOPMENTAL TOXICITY/TERATOGENICITY

6. References	ld	67989-23-5
	Date	13.12.2001

- (1) Mackay, D., A. DiGuardo, S. Paterson and C. Cowan, EQC Model ver. 1.01, 1997, available form the Emvironmental Centre, Trent Univ. Canada.
- (2) Meylan, M. Syracuse Research Corporation (1994-1999) Calculation program contained in EPIWIN (Esitmate ver. 3.04) available from SRC.
- (3) Wilson, A., (1996). Plasticizers Selection, Applications and Implications. Rapra Review Reports 8:15-16.

7. Risk Assessment

Id 67989-23-5Date 13.12.2001

7.1 END POINT SUMMARY

7.2 HAZARD SUMMARY

Chapter Remark : Chapters 4 & 5

Because of the similarity in chemical structure, the Panel believes that the toxicological properties of the substances in this category will be similar as well. Thus, the Panel considers that the data for the best tested member of this category, tris-2-(ethylhexyl) trimellitate (TOTM), also represents the potential for human and environmental effects of the other members of this category.

TOTM has been sponsored under the OECD SIDS program through ICCA. A review of the available data for TOTM (see attached Table) indicates that all endpoints have been adequately addressed, and that TOTM exhibits a low order of toxicity.

Due to their higher molecular weight and bulky side chains, the remaining members of this category are expected to demonstrate a lower order of toxicity than TOTM. This is supported by a similar structural-activity relationship observed with phthalate ester compounds, i.e., the higher molecular weight phthalates (ester side chains >C7) are less active that the transitional phthalates (ester side chains C4-C6). Thus, the use of TOTM to represent the potential hazards of the other category members is a conservative position.

Attached doc. : Summary of SIDS Information on Trimellitates.doc

Flag : Critical study for SIDS endpoint 13.12.2001

7.3 RISK ASSESSMENT

Summary of SIDS Information on Trimellitates A. Physical/Chemical Properties of Trimellitates

(R) Carbon	CAS	CAS Chemical MP* BP** VP PC Water Photodeg		Photodeg	odeg Hydrolysis	Transport (%) c							
Chain Length	Number	Name	(°C)	(°C)	(hPa@25°C)	(log Pow)	Solubility Half-life (mg/L @25°C) (days)				Air	Water	Sediment
C8	3319-31-1	tris 2-ethylhexyl (TOTM)	-46 97 c	>300 541 c	<0.0001*** 5.25E-11 c	5.94 11.59 c	3.9E-04 4.51E-08 c	0.33 с	0.05 0.32 c	97.8	3.6E - 6	2.8E - 7	2.17
C8	27251-75-8	triisooctyl ester	<0 197 c	541 c	5.25E-11 c	11.59 с	4.51E-08 c	0.35 с	0.43 c	97.8	3.64E - 6	2.8E - 7	2.17
C9	53894-23-8	triisononyl ester	<0 224 c	>300 575 c	3.17E-12 c	13.06 с	1.32E-09 c	0.31 c	0.86 с	97.8	2.74E - 7	9.61E -9	2.17
C8,C10	67989-23-5	decyl, octyl ester	<0 234 c	585 с	1.37E-12 c	12.79 c	2.78E-09 c	0.32 c	0.98 с	97.8	1.02E - 7	1.79E - 8	2.17

c = calculated data using EPWIN; all other values are derived from measurements

^{* =} All of these trimellitates are liquids at zero degrees C. Modeled data do not accurately reflect melting points for these substances

^{** -} Measured boiling points were determined to be >300°C at 0.66 kPa

^{*** =} vapor pressure of TOTM 13 Pa @ 200°C

Summary of SIDS Information on Trimellitates B. Toxicology Data on Trimellitates

(R) Acute Acute Repeated GeneTox Carbon Developmental Acute Fish Daphnia Algal CAS Chemical Acute GeneTox Toxicity to Biodegradation Dermal Inhalation Dose (Chrom. Toxicity / (A) Chain (B) (C) Number Name Oral LD50 (Ames) Reproduction LD50 LC50 Toxicity Abs.) mg/L Teratogenicity Length mg/L mg/L >20 ml/kg NOAEL (rat, > 3.2 (guinea < 2.64 NOAEL (rat, NOAEL (rat, oral) Negative tris 2-ethylhexyl oral) 1000 C8 3319-31-1 68-71 (1) g/kg (rat, dietary) 654 pig) mg/L (rat, Negative (CHL/IU 1000 mg/kg/day >100 >180 >100 (TOTM) mg/kg/day 4.2 (2) mouse) >2.0 nominal) mg/kg/day cells) (3) ml/kg (rabbit) C8 27251-75-8 Triisooctyl ester > 10 g/kg C9 53894-23-8 Triisononyl ester (rat) C8, C10 67989-23-5 decyl, octyl ester

Footnotes:

- A) Japanese Medaka (Oryzias latipes), 96 hr LC50 & NOEC
- B) Daphnia magna, 48-hr EC50
- C) Selenastrum capricornutum, 72-hr EC50 & NOEC
- (1) Inherent biodegradation by Shake Flask Method
- (2) Ready biodegradation by MITI method (OECD 301C)
- (3) OECD Preliminary reproduction toxicity screening test; indirect measure of develomental effects

SIDS INITIAL ASSESSMENT PROFILE

CAS NO.	3319-31-1
CHEMICAL NAME	Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate
Structural formula	CH2CH3 COOCH2CHCH2CH2CH2CH3
	CH ₃ CH ₂

RECOMMENDATION

The chemical is currently of low priority for further work.

SUMMARY CONCLUSIONS OF THE SIAR

Human health

Acute toxicity of TOTM is low, $LD_{50} > 2,000$ mg/kg in rats. In the irritation-test for animals, this substance is slightly irritating to the skin and the eyes. Sensitization test on guinea pig showed no sensitization. Oral study in rats conducted for 28 days at doses of 0(0), 0.2(184), 0.67(650), 0.0(1826) (mg/kg bw/day) of TOTM. There were no statistically significant differences in body weights between control and TOTM treated groups. There was a significant difference between control and treated groups in the following: hemoglobin concentration (lower in both sexes, 0.67 or 0.00), leucocyte counts (higher in males at 0.67 or 0.00), absolute and relative liver weights (higher in both sexes at all levels except 0 or 0.20), scrum albumin (higher in both sexes at 0.67 or 0.00), serum cholesterol levels (higher in males at 0.67 or 0.00), serum lipids (decreased in females at 0.67 or 0.00), scrum lipids (decreased in females at 0.00). Liver biochemistry revealed statistically significant differences between treated and control groups indicated by palmitoyl CoA oxidation (increased in both sexes at 0.00) and males at all dose levels), and catalase activity (increased in males at 0.00).

Preliminary reproductive toxicity screening test reveals moderate decrease of of permatocytes and spermatids in males at 100mg/kg/day. From these two test results, he NOAELs for repeated oral toxicity were considered to be 100 mg/kg/day for male rats. The NOAELs for reproductive/developmental toxicity were considered to be 1,000 mg/kg/day for female rats and for offspring. TOTM was evaluated its genotoxicity by many assay systems. It was neithermutagenic in bacteria nor clastogenic in mammalian cells in vitro. All other in vitro and in vivo assays gave negative results. It is concluded that TOTM is not genotoxic in vitro and in vivo. The reported results of carcinogenecity was invalid.

Absorption and metabolism were studied for ¹⁴C labeled TOTM and about 75% of the dose was excreted unchanged in the feces, 16% in the urine as metabolites and 1.9% was expired as ¹⁴CO₂.

Environment

The Mackay level III fugacity Model was employed to estimate the environmental distribution of TOTM in air, water, soil and sediment. If released to air, TOTM will exist solely in the particulate phase in the ambient atmosphere. If released to soil, TOTM is not expected to have mobility. If released into water, TOTM is expected to adsorb to suspended solids and sediment in water.

TOTM has to be considered as weakly toxic against aquatic organisms. The substance is not readily biodegradable. Measured BCF of this chemical is reported as less than 1 to 2.7 in carp for 6 weeks, which suggest that bioconcentration in aquatic organisms is much lower than the value estimated from logPow(=5.94). The toxicity data to aquatic plants (algae; Selenastrum capricornutum) was >100 mg/L for EC₅₀ (72hr) and NOEC (72hr). The acute toxicity data in fish (nedaka Oryzias latipes) were >100 mg/L (96h, LC₅₀ and NOEC) and >75 mg/L (14d, LC₅₀ and NOEC). In Daphnia magna, acute toxicity was >180mg/L (48hr: EC₅₀) and chronic toxicity was 55.6mg/L (21d, reproduction NOEC). All these data were obtained in supersaturated solution with the aid ofsolubilizer (HCO-40). The test solution was considered to be homogeneous substantially. Another chronic toxicity data inDaphnia magna (NOEC >0.082mg/L) was reported. Though this value is lower than the saturation point, the observed concentration data was less reliable. Assessment factor of 100was chosen to determine the lowest PNEC. Thus, calculated PNEC (=0.00082 mg/L) of TOTM is closely to the value of one hundredths (assessment factor) of saturation point. From these toxicity data, it is difficult to decide the exact PNEC, but we are sure of the practical safety of TOTM against aquatic organisms.

Exposure

TOTM is manufactured as the plasticizer of PVC applications.

The production volume of TOTM in Japan is approximately 20,000 tonnes/year and also, there are 5 manufacturers in Japan. Estimated global production is 40,000-100,000 tonnes/year. This substance is produced in closed system and mainly used asplasticizer for PVC electrical cable and wire. And so, this substance has been already blended to the compound asplasticizer, so it is not expected that downstream users or consumers of electric wire industry may expose to this substance.

Occupational exposure may occur through dermal contact and inhalation of mist. The process is constructed by closed system and workers wear protective gloves and goggles during the operation, so significant exposure is not expected.

NATURE OF FURTHER WORK RECOMMENDED

No recommendation

FULL SIDS SUMMARY

	SIDS SUMMARY NO: 3319-31-1	SPECIES	PROTOCOL	RESULTS
	ICAL-CHEMICAL	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.4010001	MADULIA
2.1	Melting Point	7	OECD TG 102	- 60 8C (202 to
2.2	Boiling Point	[Other (unknown)	<-50 °C (223 K)
2.3	Density		Other (unknown)	· · · · · · · · · · · · · · · · · · ·
2.4	Vapour Pressure		OECD TG 104	0.987-0.990 g/cm ³ at 20 °C < 2.8 x 10 ° Pa at 100 °C
2.5	Partition		OECD TG 104	5.94 at 25 °C
£	Coefficient		OECD IG IG	3.94 at 25 °C
	(Log Pow)			
2.6A.	Water Solubility		OECD TG 105	0.12 mail at 25.90
B.	pH		OECD 10 101	0.13 mg/L at 25 °C None
	pK2			None
2.12	Oxidation:	<u>:</u>		None
	Reduction			TODE
•	Potential			
ENVII	RONMENTAL			
11	AND PATHWAY		ĺ	
3.1.1	Photodegradation			None
3.1.2	Stability in Water		OECD TG 111	Stable at pH 4 at 50°C
			0200 10 111	T _{1/2} =17.5 days at pH 7 at 25°C
		}	Ì	$T_{1/2}=11.9$ days at pH 9 at 25°C
3.2	Monitoring Data			None
3.3	Transport and		Calculated	(Release 100% to air)
ĺ	Distribution		(Level III	Air Water Soil Sediment
			Fugacity Model)	19.6% 4.7% 66.2% 9.5%
				(Release 100% to water)
				Air Water Soil Sediment
				0.0% 32.7% 0.1% 67.2%
ĺ				(Release 100% to soil)
				Air Water Soil Sediment
			, ,	0.0% 0.0% 100% 0.0%
	101 - 4 4 1		(local exposure)	PEC _{local} = None
3.5	Biodegradation		OECD TG 302C	4.2 % after 28 days
3.7	Bioaccumulation	<u> </u>	OECD TG 305C	BCF=1-2.7(Conc. 0.2 mg/L)
	OXICOLOGY			
4.1 A	Acute Toxicity to	Oryzias	OECD TG 203	LC ₅₀ (96 hr) > 100 mg/L
,	Fish	Latipes	open me as	
4.1 B	Prolonged	Oryzias latipes	OECD TG 204	LC_{50} (14 day) > 75 mg/L
	Toxicity to Fish	' '	[NOEC(14 day) > 75 mg/L
	Agus Touleis		OPON MO SOS	LOEC(14 day) > 75 mg/L
4.2	Acute Toxicity to	Daphnia magna	OECD TG 202	EC ₅₀ (24 hr) > 180 mg/L
	Aquatic			EC ₅₀ (48 hr) > 180 mg/L
	Invertebrates			NOEC > 180 mg/L
	(Daphnia)	0.1	OFOR MA 504	LOEC > 180 mg/L
4.3	Toxicity to	Selenastrum	OECD TG 201	EC_{50} (72 hr) > 100mg/L
ļ ļ	Aquatic Plants	Capricornutum		NOEC(72 hr) > 100mg/L
	e.g. Algae	ATCC22662		
4.5.1	Chronic Toxicity			Моле
I	to Fish]

4.5.2	Chronic Toxicity to Aquate Invertebrates (Daphnia)	Daphnia magna	OECD TG 211	NOEC(21d,reproduction)= 55.6 mg LOEC(21d,reproduction)>100mg/L EC ₅₀ (21d, reproduction) >89.1mg/L LC ₅₀ for parental <i>Daphnia</i> (21d)>100 mg/L NOEC=0.0082 (21d, reproduction, parent <i>Daphnia</i> mortality)
4.6.1	Toxicity to Soil Dwelling Organisms			None
4.6.2	Toxicity to Terrestrial Plants			None
4.6.3	Toxicity to Other Non- Mammalian			None
	Terrestrial Species			ļ
	(Including Birds)			
	COLOGY	ļ		
5.1.1	Acute Oral Toxicity	Rat	OECD TG 401	LD ₅₀ > 2,000 mg/kg (for both sexes)
5.1.2	Acute Inhalation Toxicity	Rat	Other	2,600 mg/m³ (4hr)
5.1.3	Acute Dermal Toxicity	Rabbit	Other	$LD_0 > 2.0 \text{ mL/kg}$
5.2.1	Skin Irritation	Rabbit	Other ·	Slightly irritating
5.2.2	Eye Irritation	Rabbit	Other	Slightly irritating
5.3	Skin Sensitisation	Guinea pig	OECD TG 406	Not sensitizing
5.4	Repeated Dose	Rat	OECD TG 421	NOAEL = 100 mg/kg bw
	Toxicity			LOAEL = 300 mg/kg bw
5.5	Genetic Toxicity In Vitro			
A.	Bacterial Test	S.typhimurium, E. coli	Japanese Guideline and OECD TG 471 & 472	- (With metabolic activation) - (Without metabolic activation)
В.	Non-Bacterial In Vitro Test	CHL/IU cells	Japanese Guideline	 (With metabolic activation) (Without metabolic activation)
5.6	Genetic Toxicity In Vivo	Mouse	Other	No valid data
5.7	Carcinogenicity	Mouse	Other	No valid data
5.8	Toxicity to	Rat	OECD TG 421	NOAEL = 100 mg/L (male)
	Reproduction		Preliminary	NOAEL = 1,000 mg/L (female)
			toxicity screening test	NOAEL = 1,000 mg/L (Offspring)
5.9	Developmental			None
	Toxicity/			
	Teratogenicity			
5.11	Experience with			None
	Human Exposure			

[Note] Data beyond SIDS requirements can be added if the items are relevant to the assessment of the chemical, e.g. corrosiveness/irritation, carcinogenicity.

SIDS Initial Assessment Report for 13th SIAM

(November 6-9, 2001)

Chemical Name: Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate

CAS No:

3319-31-1

Sponsor Country: Japan

National SIDS Contact Point in Sponsor Country: Mr. Koji Tomita, Ministry of Foreign Affairs, Japan

HISTORY:

The original IUCLID documents were prepared by European Commission. Dainippon Ink and Chemicals Inc., Japan reviewed the documents after incorporation of Japanese testing results.

COMMENTS:

ICCA Initiative work led by Dainippon Ink and Chemicals Inc., Japan

Deadline for circulation:

Date of Circulation:

SIDS INITIAL ASSESSMENT REPORT (SIAR)

Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate

1_ IDENTITY

IUPAC Name:

Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate

CAS Number:

3319-31-1

Molecular formula:

 $C_{33}H_{54}O_6$ (MW=546.79)

Structural formula:

COOCH₂CHCH₂CH₂CH₂CH₃CH₃ CH₃CH₂CH₂CH₂CHCH₂OO $\mathrm{CH_2CH_3}$

Synonym:

TOTM

Tris(2-ethylhexyl) trimellitate

Benzene-1, 2, 4-tricarboxylic acid tris-(2-ethylhexyl) ester

Purity:

>99.5%

Impurity:

Di(2-ethylhexyl) phthalate (DEHP)

< 0.1%

Water

Additives:

None

Table 1. Physical and Chemical Properties

Items	Protocol	Results
Melting Point	OECD TG 102	< -50°C
Boiling Point	Unknown	283°C (4 hPa)
Density	Unknown	0.987 - 0.990 g/cm ³ (20°C)
Vapor pressure	OECD TG 104	<2.8 x 10 ⁻¹ Pa(100°C)
Partition Coefficient (LogPow)	OECD TG 107	5.94 (25°C)
Water Solubility	OECD TG 105	0.13 mg/ L (25°C)

2: GENERAL INFORMATION ON EXPOSURE

The production volume of TOTM in Japan is approximately 20,000 tonnes /year and also, there are 5 manufacturers in Japan. Estimated global production is 40,000 - 100,000 tonnes/year. TOTM is produced in closed system and mainly used as plasticizer for PVC electrical cable and wire especially for high temperature application. TOTM is no source of potential release to the environment except for samplingand maintenance of the productionfacilities.

2.1 Environmental Fate

Based upon the biodegradation measurement, the substance is not readily biodegradable. TOTM achieved 4.2 percent of its theoretical BOD using an activated sludge inoculum during a 4 weeks incubation in a single screening study.

The Mackay levelll fugacity model was employed to estimate the environmental distribution of TOTM in air, water, soil and sediment. The calculation results are shown in Table 2.If released to air, an estimated vapor pressure of less than 2.8 x 10⁻⁴ Pa at 100°C indicates TOTM will exist solely in the particulate-phase in the ambient amosphere. Paniculate-phase TOTM is removed from the atmosphere by wet and dry deposition. If released to soil, TOTM is not expected to have mobility based upon the fugacity model calculation Volatilization from soil surfaces is not expected to be an important environmental fate process based on the stimated vapor pressure of this substance. If released into water, TOTM is expected to adsorb to suspended solids and sediment in water based upon the fugacity model calculation. [Dainippon Ink and Chemicals, Inc. (2001)]

Hydrolysis may be an important environmental fate process based orestimated hydrolysis halflives of 17.5 and 11.9 days at pH 7 and 9, respectively. Measured BCF values of less than 1 to 2.7 in carp suggest that bioconcentration in aquatic organisms is low.

Table 2. Predicted distribution of TOTM using Pugacity level III (%)

Compartment	Release 100% to	Release 100% to	Release 100% to
Comparament	aù	water	soil
Air	19.6	0.0	0.0
Water	4.7	32.7	0.0
Soil	66.2	0.1	100.0
Sediment	9.5	67.2	0.0

2.2 Human Exposure

2.2.1 Occupational exposure

The substance is produced and used in closed system. So, occupational exposure is limited in the case of sampling and maintenance at the production facilities. Moreover, the exposure time is very short. The major rout of occupational exposure is inhalation and drmal.

The atmospheric concentration was measured at two production sites in Japan. The monitoring data are shown in Table 3. The maximum exposure level is estimated according to working schedules as follows. From Table 3, if a single worker (Body weight; 70 kg, respiratory volume; 1.25 m³/hour) is assigned to implement all daily operation without protection, the daily intake (EHE inh) is calculated as 1.77 x 10³ mg/kg/day as the worst case. On the other hand, a single worker (surface area of exposed skin 840 cm² for hands) daily dermal dose (EHE der) is calculated as 2.47 mg/kg/day based on below calculation as the worst case without protection. Workers wear protective gloves and goggles during the operation, so significant exposure is not expected.

Table 3. Available workplace monitoring data for TOTM (EHE inh)

Occupation	Frequency Times/day	Duration Hr	Wor king hr/day	Max concentration mg/m³	EHE inh mg/kg/day	Reference
Sampling	5	0.017	0.085	0.210	3.19x10 ⁻⁴	ЛЅНА,
Analysis	5	0.067	0.335	0.053	$3.17x10^{-4}$	Japan
Charge to drum	1	0.833	0.833	_0.076	1.13x10 ⁻³	(2001)
Total	11	_	1.253	-	1.77×10^{-3}	· /

EHE inh: Estimated Human Exposure for inhalation

Calculation: EHE der = (Cder * T * S * 1) /W

EHE der. Estimated Human Exposure for dermal

Cder = 990 mg/cm³ (Rate in product contacted by worker)

T = 0.01 cm (Thickness of substance)

 $S = 840 \text{ cm}^2$ (Surface area of exposed skin) for hand

t = 0.0208 day/day (Exposure time per day; 10min/8Hr, [1day = 8Hr] assumed)

W = 70 Kg (body weight)

2.2.2 Consumer exposure

Usually, this substance has been already blended to the compound asplasticizer, so it is not expected that downstream users or consumers of electric wire industry may expose to this substance.

3.HUMAN HEALTH HAZARDS

3.1 Effects on Human Health

3.1.1 Toxicokinetics and metabolism

Absorption and metabolism were studied for TOTM(14C-labeled on the 2-carbon atom of 2-ethylhexyl group) mixed with corn oil and administered by gavage in a single dose of 100 mg/kg of body weight in 4 male SDrats. About 75% of the dose was exercted unchanged in the feces, 16% in the urine as metabolites and 1.9% was expired as $^{14}\text{CO}_2$. Radioactivity was exercted in the feces as unchanged TOTM (85% of the fecal radioactivity), mono- and di(2-ethylhexyl) trimellitate(MOTM and DOTM, respectively), and as unidentified polar metabolites. Metabolites in the urine were identified as MOTM and metabolites of 2-ethylhexanol less than 0.6% of the dose remained in the tissues. Elimination of CO₂ was biphasic with half-lives of 4.3 and 31 hrs, and exerction of radioactivity in the urinewas biphasic with half-lives of 3.4 hrs and 42 hrs. [Eastman Kodak Company]

3.1.2 Acute toxicity

Acute toxicity data are mainly reported for rat, mice and rabbits. We could find 12 acute toxicity data for animals (oral(6), inhalation(1), IP(2) and dermal(3)) test data, and one (oral) study (MHW, Japan (1996)) and two (oral and dermal) studies (Nuodex Inc. (1981), Nuodex Inc. (1982c)) were conducted by the method of OECD TG and similar method to OECD TG, respectively.

The data, which we feel informative to evaluate the acute toxicity, are listed in Table 4.

Table 4. Summary of effects of TOTM on animals (Acute Toxicity)

Route	Animals	Values	Type	References
Oral	Rat	>2000 mg/kg	$\mathrm{LD}_{\mathrm{sc}}$	MHW, Japan (1996)
	Rat	>5000 mg/kg bw	LD_0	Nuodex Inc.(1981)
Inhalation	Rat	>2600 mg/m³	LC_0	Nuodex Inc.(1982b)
Dermal	Rabbit	>2 ml/kg	LD_0	Nuodex Inc(1982c)
	Rabbit	>1970 mg/kg bw	$_{\rm LD_0}$	Tenneco Chemicals(1981))
I. P .	Rat	>3200 mg/kg bw	LD_{so}	Eastman Kodak (1983)
	Mouse	>3200 mg/kg bw	LD_{50}	Eastman Kodak (1983)

It can be concluded that acute toxicity (Oral) of TOTM is LD₃₀>2000 mg/kg in rat.

3.1.3 Repeated dose toxicity

Among the eight available data, four were conducted under the GLP. Three studies were considered to be key study.

The first study was the oral study by CMA(1985). The subchronic toxicity of TOTM administered orally in the diet togroups of 5 male and 5 femaleFischer 344 rats at levels of 0(0), 0.2(184), 0.67(650), 2.0(1826) % (mg/kg bw/day) for 28 days was determined. There were no statistically significant differences in body weights between control and OTM treated groups. There was a significant difference between control and treated groups in theollowing: absolute and relative liver weights (higher in both sexes at all levels except 0 or 0.2%) serum albumin (higher in both sexes at 0.67 or 2.0%), serum cholesterol levels (higher in males at 0.67 or 2.0%). Liver biochemistry revealed statistically significant differences between treated and control groups as indicated by palmitoyl CoA oxidation (increased in both sexes at 20% and males at all dose levels), and catalase activity (increased in males at 2.0%). So, the NOAEL for repeated dose toxicity is considered to be 184 mg/kg and the LOAELis 650 mg/kg for both sexes.

The second study was the oral study by MHWJapan(1996). No test substances related changes were noted in terms of clinical signs, body weight, food consumption, and hematology, blood examination, urinalysis, and pathological findings. So, the NOEL for repeat dose toxicity is considered to be 1,000 mg/kg/day for both sexes.

The third study was the OECD preliminary reproduction toxicity screening test by MHW lapan(1998). Gavage study in SD rats conducted at doses of 100, 300 and 1,000 mg/kg/day (Male; 46days, Female; from 14days before mating to day 3 of lactation) of TOTM. The decreases in spermatocytes and spermatids in males was observed for 300 and 1,000 mg/kg groups by histopathological examination. No effects on general appearance, body weight, food consumption, autopsy findings, weights of the reproductive organs of both sexes, or histopathlogical features of the ovary were detected. So, the NAOEL is considered to be 100 mg/kg/day for males, and 1,000 mg/kg/day for females.

There is no available information on human toxicity.

Conclusions:

The NOAEL and the LOAEL for repeated oral toxicity are considered to be 100 and 300 mg/kg/day for rats, respectively.

3.1.4 Genotoxicity / Mutagenicity

We can find five reports for Ames Tests. One MHW, Japan: 1996) is conducted under GLP and others are not. The study of MHW is considered to be a key study.

TOTM has been investigated in vitro tests. This substance did not induce gene mutation in bacterial system (MHW, Japan: 1996), and chromosomal aberration in mammalian cultured cells (MHW, Japan: 1996), with and without an exogenous metabolic activation system. Among these studies, MHW study was identified to be a key study because it was well conducted ind reported.

Reverse gene mutation assay was conducted by OECD TG 471 and 472, using pre-incubation method. TOTM was not mutagenic in Salmonella typhimurium TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA at concentration of up to 5000 ug /plate, with or without an exogenous metabolic activation system (MHW, Japani 1996).

Chromosomal aberration test by OECD TG 473 was conducted in cultured Chinese hamster lung (CHL/IU) cells. Structural chromosomal aberrations and polyploidy were not inducedup to a maximum concentration of 5.0 mg/mL on continuous treatment, and with Short-term treatment, with and without an exogenous metabolic activation system (MHW, Japan: 1996).

And all other test results (HGPRT assay, Unscheduled DNA synthesis, Dominant Lethal Assay for example) shows that TOTM is not genetoxic

Conclusions:

This substance is considered to be not genotoxic with and without an exogenous metabolic activation system in bacterial test and chromosomal abenration testin vitro.

3.1.5 Carcinogenecity

One brief report states only that tests in mice, with a propensity to form pulmonary adenomas, were negative for TOTM, unlike those using urethane. The carcinogeneous tests revealed that the chemical is negative but test result was invalid.

3.1.6 Reproduction/developmental toxicity

The OECD Preliminary Reproduction Toxicity Screening Test was performed. [MHW, Japan: 1998]. This study was identified to be well conducted and eported.

Gavage study in SD rats conducted at doses of 100,300 and 1,000 mg/kg/day (Male; 46days, Female; from 14days before mating to day 3 of lactation) of TOTM.

Histopathological examination of the testes revealed decreases impermatocytes and spermatids in males of the 300 and 1,000 mg/kg groups. No effects of TOTM were detected on general appearance, body weight, food consumption, autopsy findings, and weight of reproductive organs of both sexes, or on histopathological examination of the ovary. On the basis of these findings, the NOELs of TOTM for repeat dose toxicity are considered to be 100 mg/kg/day for males, and 1,000 mg/kg/day for females.

Except for the effects in males observed on histopathological examination, no influence of this substance was detected regarding reproductive ability, organ weights or histopathological appearance of the ovaries, delivery or maternal behavior dams. No effect of TOTM were detected on viability, general appearance, body weight or autopsy findings of offspring. On the basis of these findings, the NOELs for reproductive/ developmental toxicity were considered to be 100 mg/kg/day for male rats, 1,000 mg/kg/day for female rats, and 1,000 mg/kg/day for offspring.

Conclusions:

The NOELs for reproductive/developmental toxicity were considered to be 100 mg/kg/day for male rats, 1,000 mg/kg/day for female rats, and 1,000 mg/kg/day for offspring, respectively.

3.1.8 Other: Irritation and sensitization

Six and three results are reported for skin and eye irritation test, respectively. All these test results showed that TOTM is slightly irritating to the skin and the eye.

Sensitization test on guinea pig using OECD/TG 406 (Tenneco Chemicals, 1981) showed "no sensitization".

3.2 Initial Assessment for Human Health

Acute toxicity of TOTM is considered to be LD₀>2000 mg/kg in rat.

In the irritation-test for animals, TOTM is slightly irritating to the skin and the eye.

Sensitization test on guinea pig using OECD/TG 406 showed "no sensitization".

The NOAEL and the LOAEL for repeated oral toxicity are considered to be 100 and 300 mg/kg/day for rats, respectively

The NOELs for reproductive/developmental toxicity were considered to be 100 mg/kg/day for male rats, 1,000 mg/kg/day for female rats, and 1,000 mg/kg/day for offspring, respectively.

This substance is not genotoxic with and without an exogenous metabolic activation system in bacterial test and chromosomal aberration test in vitro.

TOTM produces the same spectrum of morphological and biochemical change in the rat liver as DEHP. TOTM, however, was much less potent in its action, with a dietary level of 2.0%, causing less peroxisome proliferation and peroxisome-associated enzyme induction than 0.67% DEHP. Also, the level of peroxisome induction in rats given TOTM is less than in those receiving a metabolically equivalent dose of 2-ethylhexanol. Furthermore, on a molar basis, effects were lower than with DEHP. An effect of MEHP, a metabolite of DEHP, was not seen with TOTM. [The British Industrial biological Research Association (1985), EPA OTS0510637(1985), JOHN R. HODGSON. (1987)]

In addition, recently studies have determined that rodents (rats) are susceptible toperoxisome proliferation. After all, these results suggest that the effect of DEHP on liver are markedly different between other species (marmosets) and rodents (rats). Yoshimasa Kurata et al. (1998)] Therefore, DEHP was downgraded from Group 2B to Group 3 by the IARC Monographs Working Group. (February 2000) Group 3 is "cannot be classified as to its carcinogenicity to humans".

4. Hazards to the Environment

4.1 Aquatic Effects

TOTM has to be considered as weakly toxic against aquatic organisms. Aquatic effects were tested and results are summarized in Table 5. As the lowest acute and chronic toxicity data, EC_{so} (>100 mg/L, 72hr) of Selenastrum capricornutum ATCC22662 and NOEC (55.6 mg/L, 21day) of Daphnia magna were adopted, respectively.

Table 5. Summary of effects of TOTM on aquatic organisms

Organism	Test duration	Result (mg/L)	Reference
Algae Selenastrum capricornutum ATCC22662	72 hr	EC ₅₀ >100 NOEC>100	EA, Japan
Invertebrates			
Daphnia magna	24 hr	EC ₅₀ >180	EA, Japan
_	48 hr	EC ₅₀ >180	· •
		NOEC>180	
	48hr	EC ₅₀ _>1	ICI 1990
	21 day	EC _{so} =89.1 NOEC=55.6	EA, Japan

1	21day	NOEC=0.082	CMA (1985)
Fish Oryzias latipes	96 hr	LC _{s0} >100	EA, Japan
	14 day	LC ₅₀ >75 NOEC>75	EA, Japan

As the acute toxicity data, BC_{∞} (>100 mg/L, 72hr) of Selenastrum capricornutum ATCC22662 and EC_{50} (180 mg/L, 48hr) of Daphnia magna were adopted, respectively. As the chronic toxicity data of Daphnia magna and the prolonged toxicity data of fish Oryzias latipes), NOEC =0.082mg/L (21days) [CMA; 1985] and NOEC=75mg/L (14days) [EA Japan] were adopted, respectively. All those data in supersaturated solution, which was considered to be homogeneous substantially, was obtained with the aid of solubilizer (HCO-40). Though the observed concentration data was less reliable, one chronic toxicity data (NOEC >0.082mg/L) was reported in a lower concentration than saturation point.

Two other acute (ICI 1990) and chronic(EA Japan) data would be helpful for evaluation of the toxicity for Daphnia magna. These tests were conducted in a supersaturated solution.

Assessment factor of 100 was chosen to determine the lowest PNEC. Thus, calculated PNEC (=0.00082 mg/L) of TOTM is closely to the value of one hundredths (assessment factor) of saturation point. From these toxicity data, it is difficult to decide the exact PNEC, but we are sure that TOTM is practically non-toxic against aquatic organisms.

4.2 Terrestrial effects

There is no available information.

4.3 Initial assessment for the Environment

Hydrolysis may be an important environmental fate process based orestimated hydrolysis half-lives of 17.5 and 11.9 days at pH 7 and 9, respectively. The substance is not readily biodegradable. Measured BCF values of this chemical is reported as less than 1 to 2.7 in carp for 6 weeks, which suggest that bioconcentration in aquatic organisms is much lower than the value estimated from logPow(=5.94). If released into surface water water, TOTM is expected to adsorb to suspended solids and sediment based upon the fugacity model calculation. The sediment toxicity data was not available, and will need to assess when obtained.

5. Conclusions and recommendations

5.1 Conclusions

Exposure (Physical/chemical property, production, use and distribution)

TOTM is manufactured as the plasticizer of PVC application.

The production volume of TOTM in Japan is approximately 20,000 tonnes /year and also, there are 5 manufacturers in Japan. Estimated global production is 40,000 – 100,000 tonnes/year. TOTM is produced in closed system andmainly used as plasticizer for PVC electrical cable and wire. And so, this substance has been already blended to the compound aplasticizer, so it is not expected that downstream users or consumers of electric wire industry may expose to this substance.

Occupational exposure may occur through dermal contact and inhalation of vapor. The process

is constructed by closed system and workers wear protective gloves and gggles during the operation, so significant exposure is not expected.

In case of disposal, this substance would be incinerated with following all regulations. Therefore, it is not significant released to theen vironment

Human health

Acute toxicity of TOTM is low, LD₅₀ >2,000 mg/kg in rats. In the irritation-test for animals, this substance is slightly irritating to the skin and the eyes Sensitization test on guinea pig showed "no sensitization". Oral study in rats conducted for 28 days at doses of 0(0), 0.2(184), 0.67(650). 2.0(1826) % (mg/kg bw/day) of TOTM. There were no statistically significant differences in body weights between control and TOTM treated groups. There was a significant difference between control and treated groups in thefollowing: hemoglobin concentration (lower in both sexes, 0.67 or 2.0% TOTM), leucocyte counts (higher in males at 0.67 or 2.0%), absolute and relative liver weights (higher in both sexes at all levels except 0 or 0.2%), serum albumin (higher in both sexes at 0.67 or 20%), serum cholesterol levels (higher in males at 0.67 or 2.0%), serum urea (higher in males at 2.0%), serum lipids (decreased in females a0.2%). Liver biochemistry revealed statistically significant differences between treated and control groupses indicated by palmitoyl CoA oxidation (increased in both sexes at 20% and males at all dose levels), and catalase activity (increased in males at 2.0%). Therefore, the NOAEL and the LOAEL for repeated oral toxicity were considered to be 100 and 300 mg/kg/day for male rats. The NOELs for reproductive/developmental toxicity were considered to be 1,000 mg/kg/day for fernale rats and for offspring.

TOTM is not genetoxic/mutagenic in bacterial and mammalian cell tests in vitro tests. The carcinogenecity tests revealed that the chemical is negative but test result was invalid.

Environment.

The Mackay levellli fugacity model was employed to estimate the environmental distribution of TOTM in air, water, soil and sediment. If released to air, TOTM will exist solely in the particulate-phase in the ambient amosphere. If released to soil, TOTM is not expected to have mobility. If released into water, TOTM is expected to adsorb to suspended solids and sediment in water.

Measured BCF of values of less than 1 to 2.7 in carp suggest that bioconcentration in aquatic organisms is low.

As the lowest acute and chronic toxicity data, EC_{s0} (>100 mg/L, 72hr) of Seletiastrum capricornutum ATCC22662 and NOEC (0.082mg/L, 21day) of Daphnia magna were adopted, respectively. Assessment factor of 100 was chosen to both acute and chronic toxicity data to determine PNEC Thus, PNEC of TOTM is 0.00082mg/L.

5.2 Recommendations

The chemical is currently of low priority for further work.

6. References

Chemicals Evaluation and Research Institute, Japan Ministry of International Trade and Industry (1998)

Chemicals Inspection and Testing Institute Japan. Chemical Industry Ecology-Toxicology and Information Center. (1992)

Chemicals Inspection and Testing Institute, Ministry of International Trade and Industry (1992)

Dainippon link and Chemicals, Inc. unpublished report. (2001)

CMA Doc ID 408565036 (1985)

Eastman Kodak. Absorption and metabolism of (hexyl-2¹⁴ C) Tri-(2-ethylhexyl)trimellitate in the rat. (1984)

Environmental Agency of Japan (1999a), Ecotoxicity testing report, Test NoNMMP/E09/1080 Environmental Agency of Japan (1999b), Ecotoxicity testing report, Test NoNMMP/E09/2080 Environmental Agency of Japan (1999c), Ecotoxicity testing report, Test NoNMMP/E09/3080 Environmental Agency of Japan (1999d), Ecotoxicity testing report, Test NoNMMP/E09/4080 Environmental Agency of Japan (1999d), Ecotoxicity testing report, Test NoNMMP/E09/5080

EPA Document No. 40-8565037, Fiche No. OTS0510637

JOHN R. HODGSON. Results of peroxisome induction studies ontri(2-ethylhexyl)rimellitate and 2-ethylhexanol. Toxic.Ind. Hlth, Vol.3, No.2, 1987

Midwest Research Institute; Thomas W. Lapp, Charles E Mumma Joseph Chaszar: A Survey of Plasticizers: Epoxics, Linear Polyesters and Trimellitates Chemical Technology and Economics in Environmental Perspective, Task IV, Environmental Protection Agency (Nov. 1981)

Ministry of Health and Wolfare, Japan (1996) Toxicity Testing Report, Vol. 4, 695-720

Ministry of Health and Welfare, Japan (1998) Toxicity Testing Report Vol. 6, 569-578

MITI Japan (1992) Green Card of "biodegradation and bioaccumulation data of existing Chemicals based on the CSCL Japan"

Nuodex Inc. Acute dermal toxicity test of Tenneco Chemicals, Inc. compound Nuoplaz 6959 in rabbits. Doc ID878214467. (1982a)

Nuodex Inc. Acute inhalation toxicity test in sprague-dawley rats using compound Nuoplaz 6959 Doc ID878214466 (1982b)

Nuodex Inc. Acute oral toxicity—Rats Doc ID878214469 (1981)

The British Industrial biological Research Association; A 28-day Toxicity Study with TOTM in the Rat with Cover Letter Dated 111885. (1985)

Yoshimasa Kurata. Subchronic Toxicity of Di(2-ethylhexyl)phthalate in Common Marmosets: Lack of Hepatic Peroxisome Proliferation, Testicular Atrophy, or Pancreatic Acinar Cell Hyperplasia. Toxicological Sciences 42, 49-56 (1998)

PROPOSED ROBUST SUMMARY for Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate CAS No. 3319-31-1

Sponsor Country: Japan

D' aug 24, 2001

PHYSICAL/CHEMICAL ELEMENTS

MELTING POINT

TEST SUBSTANCE

Jdentity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: 98.5%

METHOD

Method/guideline:

OECD TG 102

• GLP:

Yes

· Year:

1998

Remarks:

Not stated.

RESULTS

Melting point value:

<-50 °C (223 K)

Decomposition:

Not stated,

Sublimation:

Not stated.

Remarks:

Not stated.

CONCLUSIONS

Melting point is <-50°C (223 K).

DATA QUALITY

Reliabilities:

Key study

Remarks:

Well conducted study, carried out by Chemicals Evaluation and

Research Institute (Kurume, Japan).

REFERENCES

Ministry of International Trade and Industry (1998)

- Last changed:
- Order number for sorting
- Remarks:

BOILING POINT (a)

TEST SUBSTANCE

· Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Unavailable.

METHOD

Method:

Not specified.

GLP:

Not stated.

· Year:

Not stated.

Remarks:

Not stated.

RESULTS

Boiling point value:

283°C

· Pressure:

4

Pressure unit:

hPa

Decomposition:

Not stated,

Remarks:

Not stated.

CONCLUSIONS

Boiling point is 283°C at 4 hPa.

DATA QUALITY

Reliabilities:

Key study

Remarks:

Not stated.

REFERENCES

Midwest Research Institute; Thomas W. Lapp, Charles EMumma Joseph Chaszar: A Survey of Plasticizers: Epoxies, Linear Polyesters and Trimellitates Chemical Technology and Economics in Environmental Perspective, Task IV, Environmental Protection Agency (Nov. 1981)

- Last changed:
- Order number for sorting
- Remarks:

BOILING POINT (b)

TEST SUBSTANCE

· Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

· Remarks:

Source: Unavailable.

METHOD

Method:

Not specified.

GLP:

Not stated.

• Year:

Not stated.

· Remarks:

Not stated.

RESULTS

· Boiling point value:

414°C (687K)

· Pressure:

1,013

· Pressure unit:

hPa

Decomposition:

Not stated.

Remarks:

Not stated.

CONCLUSIONS

Boiling point is 414°C at 1,013hPa.

DATA QUALITY

· Reliabilities:

Key study

· Remarks:

The Sigma-Aldrich Library of Regulatory and Safety Data.

REFERENCES

Ministry of International Trade and Industry (1998)

- Last changed:
- Order number for sorting
- Remarks:

DENSITY

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Unavailable.

METHOU

Method:

Not specified.

GLP:

Not stated.

• Year:

Not stated.

Remarks:

Not stated.

RESULTS

Density:

 $0.987 - 0.990 \text{ g/cm}^3$

· Temperature

20°C

Remarks:

Not stated.

CONCLUSIONS

Density is 0.987-0.990 g/cm3 at 20°C.

DATA QUALITY

Reliabilities:

Key study

Remarks:

Not stated.

REFERENCES

Midwest Research Institute; Thomas W. Lapp, Charles EMumma Joseph Chaszar: A Survey of Plasticizers: Epoxies, Linear Polyesters and Trimellitates Chemical Technology and Economics in Environmental Perspective, Task IV, Environmental Protection Agency (Nov. 1981)

- Last changed:
- Order number for sorting
- Remarks:

VAPOR PRESSURE (a)

TEST SUBSTANCE

· Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasel Kogyo Co., Ltd. Lot No. AX01

Purity: 98.5%

METHOD

Method/guideline:

Yes

OECD TG 104

• GLP:

Year:

1998

Remarks:

Not stated.

RESULTS

Vapour Pressure value:

 $< 2.8 \times 10^{-4} \text{ Pa}$

· Temperature:

100°C

• Decomposition:

Not stated.

· Remarks:

Not stated.

CONCLUSIONS

Vapour pressure is $< 2.8 \times 10^{-4}$ Pa at 100° C.

DATA QUALITY

Reliabilities:

Key study

Remarks:

Well conducted study, carried out by Chemicals Evaluation and

Research Institute (Kurume, Japan).

REFERENCES

Ministry of International Trade and Industry (1998)

- Last changed:
- Order number for sorting
- Remarks:

VAPOR PRESSURE (b)

TEST SUBSTANCE

• Identity: Tris(2-ethylhexyl)benzene-1.2,4-tricarboxylate

Remarks: Source: Unavailable.

METHOD

Method/guideline: Not stated

GLP: Not stated

Year: Not stated
 Remarks: Not stated.

RESULTS

• Vapour Pressure value: 0.27 - 6.7 hPa

Temperature: 250 - 260 °C
 Decomposition: Not stated.

Remarks: Not stated.

CONCLUSIONS

Vapour pressure is 0.27- 6.7 hPa at 250 - 260 °C.

DATA QUALITY

• Reliabilities: Key study

Remarks: Not stated.

REFERENCES

Midwest Research Institute; Thomas W. Lapp, Charles EMumma Joseph Chaszar: A Survey of Plasticizers: Epoxies, Linear Polyesters and Trimellitates Chemical Technology and Economics in Environmental Perspective, Task IV, Environmental Protection Agency (Nov. 1981)

- Last changed:
- Order number for sorting
- Remarks:

PARTITION COEFFICIENT

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: 98.5%

METHOD

Method/guideline:

OECD TG 107 (Shake Flask Method, 1995)

GLP:

Yes

· Year:

1998

Remarks:

Not stated.

RESULTS

Log P_{un}:

5.94

· Temperature:

25°C ±1°C

Remarks:

Test condition: Test was conducted in duplicate under the following

three conditions. Test chemical was analyzed y HPLC.

Test condition	Candition-1	Condition-2	Condition-3
1-Octanol saturated with water	10 mL	2 0 mL	40 mL
Water saturated with 1-octanol	240 mL	230 mL	210 mL
Test chemical in 1-octanol saturate	d with water (52.2 mg)	

10 ml. 10 ml. 10 ml.

Test results	Log	Pow	
,	a	b	Mean
Condition-1	5.99	5.99	
Condition-2	5.95	5.87	5.94
Condition-3	5.92	5.93	

CONCLUSIONS

 $\log P_{on}$ is 5.94.

DATA QUALITY

Reliabilitées:

Key study

Remarks:

Well conducted study, carried out by Chemicals Evaluation and

Research Institute (Kurume, Japan).

REFERENCES

Ministry of International Trade and Industry (1998)

- Last changed:
- Order number for sorting

 	· · · · · · · · · · · · · · · · · · ·	 		 	
Remarks:					

WATER SOLUBILITY

TEST SUBSTANCE

·]dentity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: 98.5%

METHOD

Method:

OECD TG 105 (flask method).

GLP:Year:

Yes 1998.

· Remarks:

Not stated.

RESULTS

Value:

0.13 mg/L at 25 °C±1°C

Description of solubility;

Of very low solubility

pH value;

No dissociation group.

pKa value:

There is no pertinent functional group.

Remarks:

Not stated.

CONCLUSIONS.

This chemical is very low solubility in water.

DATA QUALITY

Reliabilities:

Key study

Remarks:

Well conducted study, carried out by Chemicals Evaluation and

Research Institute (Kurume, Japan).

REFERENCES

Ministry of International Trade and Industry (1998)

- Last changed:
- Order number for sorting
- Remarks:

ENVIRONMENTAL FATE AND PATHWAYS ELEMENTS

STABILITY IN WATER

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: 98.5%

METHOD

Method/guideline:

OECD TG 111

· Type:

Hydrolysis as a function of pH

• GLP:

Yes

Year:

1998

Remarks:

No hydrolysis of test chemical was observed at pH 4 at 50°G-1°C for 5 days. Hydrolysis rates at pH 7 were determined at 60, 70 and 80 °C, and at pH 9 at 50, 60, and 70°C. They were extrapolated to 25 °C using Arrhenius relationship. Half life at 25 °C was calculated from the rate constant.

RESULTS

Nominal:

ca. 0.2 mg/L

Measured value:

Not stated.

Degradation:

No hydrolysis occurred in 5 days, at 50 °C pH 4. At pH 7 and pH 9,

test chemicals were hydrolysed at all temperatures studied.

• Half-life $(t_{0/2},)$:

Rate Constant (hr-1)

Half-life(day)

pH 7 pH 9 1.65 x 10⁻⁵ 2.44 x 10⁻⁵ 17.5 11.9

Breakdown products:

Not stated.

Remarks:

Not stated.

CONCLUSIONS

This chemical is stable in aqueous water at pH 4 under the condition studied, but it ishydrolysed at pH 7 and pH 9 at 25 °C with half-life of 17.5 and 11.9 days.

DATA QUALITY

· Reliabilities:

Key study

Remarks:

Well conducted study, carried out by Chemicals Evaluation and

Research Institute (Kurume, Japan).

REFERENCES

Ministry of International Trade and Industry (1998)

DRAFT ENV/JM/EXCH(99)13

- Last changed: Order number for sorting
- Remarks:

TRANSPORT BETWEEN ENVIRONMENTAL COMPARTMENTS (FUGACITY)

TEST SUBSTANCE

Identity:

Tris(2-ethy)hexyl)benzene-1,2,4-tricarboxylate

· Remarks:

Source: Not applicable.

METHOD

· Test:

Calculation

Method:

Fugacity level III

· Year:

2001

• Remarks

The parameters used are shown in Appendix.

RESULTS

- Media :
- · Estimated Distribution under three emissionscenarios:

Compartment	Release 100 % to air	Release 100 % to water	Release 100 % to soil
Air	19.6 %	0.0 %	0.0%
Water	4.7 %	32.7 %	7.0 °7
Soil	66.2 %	0.1 %	£00.0 %
Sediment	9.5 %	67.2 %	0.0%

Remarks:

CONCLUSIONS

If this chemical is released into water the majority of this chemical is expected to stay in sediment but if it is released into air or soil, this chemical is expected to stay in soil

DATA QUALITY

Reliabilities:

Key study.

Remarks:

Not stated.

REFERENCES

Dainippon Ink and Chemicals, Incorporated (2001), unpublished report.

- Last changed:
- Order number for sorting
- Remarks:

BIODEGRADATION

TEST SUBSTANCE

Identity:

Tris(2-ethylliexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Unavailable.

METHOD

Method:

OECD TG 302C "Inherent Biodegradability: Modified MITHest(II)"

Test Type:

Aerobic.

GLP:

No

Years

1977 28 days

Inaculum:

Contact time:

The supernatant (500ml) of activated sewage sludge obtained from ensampling sites and Sliters of supernatant removed from a previously established culture are transferred to a culture vessel. The pH of the culture mixture was adjusted to 7.0±1.0 and constantly acrosed. Thirty minutes after stopping aeration, discard about 1/3 of the whole volume of the supernatant, and add an equal volume of 0.1% synthetic sewage.

and the acration re-started. Repeat this procedure once a day.

Remarks:

During the aeration, appearance of supernatant and the formation of activated sewage was observed. The sludge was found to form a clear supernatant on settling and formed cloudyfloes when on aeration. Operating temperature, pH and a dissolved oxygen concentration were recorded. The protozoa of sludge were observed under an optical microscope.

*Incubation apparatus: Respirometry(Closed bottle) Ohkura Electric Co.

*CO2 absorbent: Soda lime No.1 (Wako pure chemicals Inc.)

*Stirrer: Magnetic stirrer *Temperature: 25±1°C

Concentration of test chemical: 30mg/L, 100mg/L.

*Reference substance: Aniline

RESULTS

Degradation:

Results:

4.2% after 28days

Kinetic:

The percentage degradation in term of oxygen consumption was

calculated as follows:

% degradation = (BOD-B)/IOD x 100

BOD: Biological Oxygen Demand of the test material

: Oxygen consumption in basal culture medium to which inoculum is added (control)

TOD: Theoretical oxygen demand to completely oxidize the test

Material

Breakdown products:

Not stated.

Remarks:

At the end of incubation, measure the residual dissolved organicarbon and test material concentration. The reference substance, aniline attained more than 40% and 60% degradation after 7 and 14days confirming the suitability of the inoculum and culture conditions.

CONCLUSIONS

This chemical islow biodegradable.

DATA QUALITY

· Reliabilities:

Key study

Remarks:

Well conducted study, carried out by Chemical Inspection and Testing

Institute.

REFERENCES

Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan 1992)

Ministry of International Trade and Industry

- Last changed:
- · Order number for sorting
- Remarks:

BIOACCUMULATION

TEST SUBSTANCE

· Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

· Remarks:

Source: Unavailable

METHOD

· Method:

OECD TG 305C

Species:

Cyprinus Carpio (Obtained from Nakajima hatchery in Kumamoto,

Japan)

GLP:

No

Year:

1978

Exposure Period:

42 days

Remarks:

Test fish:

Acclimated for ca. 8 weeksbefore testing at 25±2°C. Fish with ca.10cm

in length and ca.30g in weight were selected at random. Lipid content

was 2-6%.

Test condition

Concentrations: 0.2 and 2 mg/L, solubilizer controlled

Type of test: flow-through (200-800mL/min), 100L glass tank.

Dissolved oxygen concentration: 6-8mg/L

Temperature: 25 ±2°C

Water chemistry was tested in the control and two concentrations every

2 times in a week.

Test was conducted in duplicate every 2 weeks for two concentrations.

(The control was done before and after testing.)

RESULTS

- Results:

BCF=1-2.7 (concentration: 0.2mg/L)

BCF=0.1-0.23(concentration: 2mg/L)

Kinetic:

BCF=C1/C2

C1: Concentration of this chemical in Fish C2: Concentration of this chemical in water

· Breakdown products:

Not stated.

CONCLUSIONS

This chemical is low bioaccumulation.

DATA QUALITY

Reliabilities:

Key study

Remarks:

Well conducted study, carried out by Chemical Inspection and

Testing Institute

REFERENCES

Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan(1992)

Ministry of International Trade and Industry

- · Last changed:
- · Order number for sorting
- · Remarks:

ECOTOXICITY ELEMENTS

ACUTE TOXICITY TO FISH

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: >95.0%

METHOD

Method:

OECD TG 203

Type:

Semi-static

GLP:

Yes

Year:

1998.

Species/Strain/Supplier: Oryzias latipes (Medaka): Obtained from commercial domestic

hatcheries.

Analytical monitoring

Yes. Test solutions were measured by HPLC before and after 24 hours.

exposure period. Test solutions were replaced every 24 hours to new ones.

Exposure period (h):

96

Statistical methods:

Not applicable because of no mortality.

Remarks:

Test fish:

Acclimated for more than 12 days before testing; any groups showing no mortality for 7 days before test started. Fish with 22.1 mm (18.3-23.8) mm) in length were selected at random. Average body weight of fishers

0.1462g (n=10).

Test conditions

Details of test: Semi-static (water changedevery 24 hours)

Dilution water source: Tap water after dechlorinated by passing through

activated carbon.

Dilution water chemistry: Hardness: 25 mg/L as CaCO₃; pH: 6.7 Stock and test solution and how they are prepared: Pipene or pour the appropriate amount of the solution (0.3 wt% of test chemicalwith solubilizer hydrogenated caster oil HCO-40 3000mg/D into the test

waters.

Concentrations dosing rate, flow-through rate, in what medium: Concentrations of 0, 100 mg/L and dispersant control were tested. Vehicle/solvent and concentrations: Hydrogenated caster oil HCO-40.

100mg/L

Stability of the test chemical solutions: Stable, measured concentration was 101-103%.

Exposure vessel type: 10 fish per group in 3L glass beaker without acration under room light

Number of replicates, fish per replicate: One replicatewas done. Water chemistry in test (O 2, pH) in the control and all concentration where effects were observed: Dissolved oxygen readings and pH values

were taken daily during 96 h exposure period.

Dissolved oxygen concentration: 5.0-9.2 mg/L.

pH values: 6.7-6.8.

Test temperature range:Water temperature at 23.5-24.1°C.

Method of calculating mean measured concentrations: Geometric mean.

RESULTS

Nominal concentrations: 0, 100 (mg/L)

Measured concentrations: <1, 103 (0hr), <1, 102 (24hr)

Unit: mc/L.

Element value LC_{so} at 96 hours >100.0 mg/L based on nominal concentrations.

Statistical results as appropriate: Not applied.

Remarks field for Results:

Biological observations Not described.

Table showing cumulative mortality:

Percent mortality of Orygias latipes exposed to the test chemical

ominal concentration (mg/L)	Cumulativ	e number of	dead fish (%	mortality)
	24 hour	48 hour	72 hour	96 hour
Control	O(0)	0(0)	0(0)	1(10)
Dispersant Control	0(0)	0(0)	0(0)	0 (0)
100	0(0)	1(10)	1(10)	1(10)

Lowest test substance concentration causing 100% mortality:

Not obtained under the test conditions studied.

Mortality of controls:

1 fish was dead at 96h.

Abnormal responses:

At 24 hr, one fish showed abnormal breathing behaviour at 100mg/L.

Reference substances:

Copper(II)sulfate pentahydrate, LC₅₀ at 96h was 0.43 mg/L.

Any observations, such as precipitation that might cause a difference between measureded nominal values:

It became clouded in Iffilmg/L concentration, but not precipitation.

CONCLUSIONS

LC50 (96h) > 100 mg/L for fish.

DATA QUALITY

Reliabilities: Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Experimental design and analytical procedure were well documented.

Carried out by Toray Research Center (Japan).

REFERENCES

Environment Agency of Japan (1998).

OTHER

Last changed:

Order number forsorting:

Remarks field for GeneralRemarks:

PROLONGED TOXICITY TO FISH

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

· Remarks:

Source: Tokyo Kasej Kogyo Co., Ltd. Lot No. AX01

Purity: >95.0%

METHOD

Method:

OECD TG 204

· Type:

Flow-through.

• GLP:

Yes.

· Year:

1998.

Species/Strain/Supplier:Analytical monitoring:

Orygias latipes (Medaka): Obtained from commercial domestic hatcheries. Yes. Test solutions were measured by HPLC before and after 7, 14days

exposure period.

Exposure period:

14 day.

Statistical methods

Binomial method (TOXDAT MULTI-METHOD PROGRAM, USEPA)

Dunnet method was used for LC₅₀ and for fish body weight difference,

respectively.

Remarks field for Test Conditions:

Test fish:

Acclimated for more than 12 days before testing; any groups showing 9% mortality for 7 days before test started. Fish with 20.0 mm (18.5-21.6 mm) in length were selected at random. Average body weight of fish was 0.484g (0.1182-0.2014g)(n=10). Fish were starved for 24 hours before the test

started.

Test conditions:

Details of test: Flow-through.

Dilution water source: Tap water after dechlorinated by passing through

activated carbon.

Dilution water chemistry: Hardness: 15.3mg/L as CaCO₅; pH: 7.0 Stock and test solution and how they are prepared: The working solution (4.8wt% of test chemical with solibilizer HCO-40 controlled) was prepared with the dilution water. The test solution was supplied continuously by mixing the working solution and the dilution water with the help of a mechanically operated quantitative water-pump.

Concentrations dosing rate, flow-through rate, in what medium: Nominal concentrations of 0, 18.8, 37.5 and 75.0 mg/L and Dispersant control were tested.

Vehicle/solvent and concentrations Hydrogenated caster oil HCO-40,

Max. 75.0 mg/L

Stability of the test chemical solutions: It became clouded in high

concentration, but not precipitation.

Exposure vessel type: 10 fish per group in 3L glass beaker without aeration

under room light

Number of replicates, fish per replicate: One replicate was done.

Water chemistry in test $(O_{>}, pH)$ in the control and one concentration where

effects were observed: Dissolved oxygen readings and pH values were

taken every 3 days during the exposure period. Dissolved oxygen concentration: 6.6-7.7 mg/L.

pH values: 6.9~7.2.

Test temperature range:

Water temperature at 23.5-24.1°C (24 ± 2 °C).

Method of calculating mean measured Geometric mean.

RESULTS

- Nominal concentrations: 0, 18.8, 37.5, 75.0 (mg/L) and dispersant control
- Measured concentrations:

Measured concentration of the test chemical during a 14-day exposure of orange killifish (Oryzias latipes) under flow-through test conditions

	Nominal concentration (mg/L)	Measured conc	entration (m	g/L) (percent	of nominal)
		O day	7 day	14 day	Mean
	Control	<1.0	< 1.0	< 1.0	
	Dispersant Control	< 1.0	< 1.0	< 1.0	- -
	18.8	17.7(94.1)	15.8(84.0)	15.5(82.4)	16.3(86.9)
	37.5	35.7(95.2)	33.2(88.5)	30.0(80.0)	33.3(87.9)
	75.0	70.6(94.1)	68.8(91.7)	71.2(94.9)	70.2(93.6)
:	mg/L				, ,

Unit:Element value:

LC₅₀ (7 days) > 75.0mg/L (nominal concentration)

LC_{so} (14 days) > 75.0mg/L (nominal concentration)

NOEC (14 days) > 75.0 mg/L (nominal concentration)

Statistical results, as appropriate:

The mean body weight of fish exposed toall concentration of the test chemical was not significantly different from controls during the test periodalfa=0.05, Dunnet).

Remarks field for Results:

Biological observations: Not described.

Cumulative mortality:

Percent mortality of *Orygins latipes* exposed to the test chemical under flow-through test Conditions

Nominal conc. (mg/L)	Cu	mulativ	e ការរាន	her of	dead	līsh	(% m	ortalit	y)				(đa	ys)
·	0 1	2	3	4	5	6	7	8	9	10	11	12	13	14
Control	0(0) 0(0	0(0)	0(0)	0(0)	0(0)	Q(0)	0(0)	O(0)	0(0)	0(0)	0(0)	1(10)	1(10)	1(10)
Disp. Cont.	0(0) 0(0	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	(0)0	0(0)
18.8	0(0) 0(0	0(0)	0(0)	0(0)	Q(0)	O(D)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
37.5	0(0) 0(0	0(0)	0(0)	0(0)	O(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
75.0	0(0) 0(0	0(0)	0(0)	0(0)	O(O)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)

Fish weight:

		Fish weight (g)									
Numinal cone. (mg/ ${f L}$)		Fish v	reight (g)							
_	No.1	No.2	No. 3	No.4	No.5	No.6	No.7	No.8	No.9	No.10	Ave.
Control	0.1879	0.2526	0.1273	0.2239	0.1139	0.1434	0.1708	0.1789	0.1558	-ā	0.1727
Disp. Cont.	0.2205	0.1827	0.1192	0.1884	0.1438	0.1823	0.1563	0.2120	0.1635	0.1580	0.1727
18.8	0.1731	0.1513	0.1593	0.1472	0.2150	0.1548	0.1547	0.1306	0.2104	0.1020	0.1598
37.5	0.1264	0.1495	0.1872	0.1237	0.2055	0.1396	0.1805	0.2101	0.1577	0.1303	0.1611
75.0	0.1746	0.1848	0.1804	0.1625	0.1494	0.1633	0.2103	0.1454	0.1600	0.1818	0.1713
	- 1	· No mea	e e e e e e e e e e e e e e e e e e e	t was mad	te becaus	e the Orai	nge Killif	ish was <i>de</i>	-ar1		

Lowest test substance concentration causing 100% mortality>75.0 mg/mL (nominal).

Mortality of controls:10 % mortality observed during the test period (12 through 14 days).

Food intake:

Fish was fed with TetraMin fish food (2% of fish body weight).

Abnormal responses: No abnormal response showed through 14 days.

Reference substances (if used)— results: Copper (II) sulfate pentahydrate. LC₅₀ at 96h was 0.30 mg/L.

Any observations, such as precipitation that might cause a difference between measured and nominal values: It became clouded high concentration, butnot precipitation.

CONCLUSIONS

LC₅₀ (7 days) > 75.0 mg/L (nominal concentration) LC₅₀ (14 days) > 75.0 mg/L (nominal concentration) NOEC (14 days) > 75.0 mg/L (nominal concentration)

DATA QUALITY

Reliabilities:

Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Experimental design and analytical procedure were well documented. Carried out by Toray Research Center (Japan).

REFERENCES

Environment Agency of Japan (1998).

- Last changed:
- · Order number for sorting :
- Remarks and for GeneralRemarks:

ACUTE TOXICITY TO AQUATIC INVERTEBRATES (e.g., Daphnia)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: >95.0%

METHOD

Method:

OECD TG 202

· Type:

Static

• GLP:

Yes

Уеаг:

1998

Species/Strain/Supplier:

Daphnia magna

Analytical monitoring

Yes. Test solutions were measured by HPLC before and after 48 hours

exposure period.

Exposure period (h):

48

Statistical methods:

Not applicable.

Remarks field for Test Conditions:

Test organisms:

Source, supplier, any pre-treatment, breeding method: Supplied by NIES

(Japan).

Age at study initiation: Juveniles within 24h old.

Control group: Yes.

Test conditions

Stock solutions preparation and stability: No solvent used. Test chemical

was diluted to 1800mg/L(with solubilizer HCO-40 1000mg/L controlled)

with diluting water (Elendt M4) before use.

Test temperature range:

19.9-20.2 °C (average temperature 20°C).

Exposure vessel type: 100mL test solution in a 100 mL glass beaker; 4

beakers per treatment

Dilution water source: Elendt M4(OECD guideline No.211 Annex 2)

Dilution water chemistry: Hardness: 228mg/L as CaCO₃ Lighting: room light 16h:8h light-darkness cycle Water chemistry in test: DO= 8.0-8.6mg/L; pH=7.3-7.8.

Feeding: none

Test design:

Number of replicates=20

Concentrations: 0, 17.1, 30.9, 55.6, 100 and 180 mg/L, because 48h-EiC_{so} for parent Daphnia (Acute immobilization test) was>1000mg/L. Dispersant

control was also tested.

Method of calculating mean measured concentrations Geometric mean.

Exposure period:

48 h

Analytical monitoring:

By HPLC analysis, 95.1-99.6% of the nominal concentration at

preparation; 90.1-97.7% after 48hr.

ACUTE TOXICITY TO AQUATIC INVERTEBRATES (e.g., Daphnia)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: >95.0%

METHOD

· Method:

OECD TG 202

Type:

Static

• GLP:

Yes

Year:

1998

• Species/Strain/Supplier:

Daphnia magna

Analytical monitoring

Yes. Test solutions were measured by HPLC before and after 48 hours

exposure period.

Exposure period (h):

48

Statistical methods:

Not applicable.

Remarks field for Test Conditions:

Test organisms:

Source, supplier, any pre-treatment, breeding method: Supplied by NIES

(Japan).

Age at study initiation: Juveniles within 24h old.

Control group: Yes.

Test conditions

Stock solutions preparation and stability: No solvent used. Test chemical

was diluted to 1800mg/L (with solubilizer HCO-40 1000mg/L controlled)

with diluting water (Elendt M4) before use.

Test temperature range:

19.9-20.2 °C (average temperature 20°C).

Exposure vessel type: 100mL test solution in a 100 mL glass beaker, 4

beakers per treatment

Dilution water source: Elendt M4(OECD guideline No.211 Annex 2)

Dilution water chemistry: Hardness: 228mg/L as CaCO₃ Lighting: room light 16h:8h light-darkness cycle Water chemistry in test: DO= 8.0-8.6mg/L; pH=7.3-7.8.

Feeding: none

Test design:

Number of replicates=20

Concentrations: 0, 17.1, 30.9, 55.6, 100 and 180 mg/L, because 48h-EiC_{so} for parent Daphnia (Acute immobilization test) was>1000mg/L. Dispersant

control was also tested.

Method of calculating mean measured concentrations Geometric mean.

Exposure period:

48 h

Analytical monitoring:

By HPLC analysis, 95.1-99.6% of the nominal concentration at

preparation; 90.1-97.7% after 48hr.

RESULTS

17.1, 30.9, 55.6, 100.0, 180.0 (mg/L) (Solubilizer controlled) Nominal concentrations:

Measured concentrations:

Measure Concentrations of test chemicals during a 48hr.

Nominal Concentration	Measur	ed concent	ration(mg/L)	Percen	t of nontinal
(mg/L)	Ohr	48hr	Mean	Ohr	48hr
Control	< 1.0	< 1.0	-	-	-
Disp.Cont.	< 1.0	< 1.0	-	-	-
17.1	16.3	15.4	15.8	95.3	90.1
30.9	29.4	28.5	28.9	95.1	92.2
55.6	53.0	52.1	52.5	95.3	93.7
100.0	98.4	96.3	97.3	98.4	96.3
180.0	179.2	175.8	177.5	99.6	97.7

Unit:

mg/L.

Element value

EC₅₀ at 24 hours > 180.0 mg/L

EC50 at 48 hours >180.0 mg/L

NOEC > 180.0 mg/LLOEC > 180.0 mg/L

- Statistical results as appropriate: Not applied.
- Remarks field for Results:

Biological observations

Not described.

Table showing mortality or immobility

Mortality or immobility of Daphnia magna to the test chemical

_	(Percent Mort	ality or Immobility)
	24 hour	48 hour
Control	0(0)	0(0)
Dissersant Control	0(0)	1(5)
17.1	0(0)	1(5)
30.9	0(0)	0(0)
55.6	0(0)	0(0)
100.0	0(0)	0(0)
180.0	0(0)	0(0)

Lowest test substance concentration causing 100% mortality:

Nominal concentration (mg/L)

Not obtained under the test conditions studied.

Mortality of controls:

No mortality observed during test period.

Abnormal responses:

No abnormal responses observed during test period

Cumulative number of dead or immobilizes Daphnia

Reference substances:

Potassium dichromate EC_{so} at 48h was 0.87 mg/L.

Any observations, such as precipitation that might cause a difference between measuredind nominal values: It became clouded in high concentration, butnot precipitation.

CONCLUSIONS

 EC_{50} (48h) > 180mg/L and NOEC (48h) > 180mg/L for Daphnia magna.

DATA QUALITY

· Reliabilities:

Klimisch Code: 1=reliable without restrictions.

· Remarks field for Data Reliability:

Experimental design and analytical procedure were well documented. Carried out by Toray Research Center (Japan).

REFERENCES

Environment Agency of Japan (1998).

- · Last changed:
- · Order number forsorting:
- · Remarks field for GeneralRemarks:

TOXICITY TO AQUATIC PLANTS (E.G., ALGAE)

TEST SUBSTANCE

· Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

· Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: >95.0%

METHOD

Method/guidelinefollowed: OECD TG 201

· Test type:

Static.

• GLP:

Yes

Year:

1998

Species/strain # and source: Selenastrum capricornutum ATCC22662 (purchased from ATCC)

Element basis:

Area under the growth curve.

· Exposure period:

72 h.

Analytical monitoring:

Yes, measured by HPLC at start and end of the test (72hr).

Statistical methods:

Bartlett test for homogeneity in variances and One-wayAnova (EcoTox-Statistics Ver.1.0 beta-edition R1.4) were used for EC₅₀, LC₅₀ and NOEC.

determination (p=0.05).

Remarks field for Test Conditions:

Test organisms

Laboratory culture: OECD medium

Method of cultivation: Shaking at 100rpm

Controls: OECD medium. EC so of potassium dichromate was 0.41 mg/L.

Test Conditions

Test temperature range: 23±2 °C

Growth/test medium: OECD medium.

Shaking: 100 rpm

Dilution water source: OECD medium.

Exposure vessel type: 100 mL OECD medium in a 300 mL Erlenmeyer

flask with a silicon cap which allows ventilation.

Water chemistry in test (pH) in at least one replicate of each concentration (at start and end of the test): pH=7.3-7.4 at start and 8.3-8.8 at end of the

test (72 h).

Stock solutions preparation: No stock solution was prepared. Test chemical was diluted to 100 mg/L (solubilizer, HCO-40 100 mg/L) with

OECD medium and sterilised with filter before use.

Light levels and quality during exposure: 4,756-4,822 lux, continuous

illumination.

Test design

Number of replicates: Triplicate

Concentrations: 0, 100 mg/L and dispersant control were tested.

Initial cell number in cells/mL: 1x10⁴

Method of calculating mean measured concentrations Geometric mean.

RESULTS

Nominal concentrations:

0, 100 (mg/L) and dispersant control.

Measured concentrations:

At start of the test (0 hr), <1.0, 80.6, <1.0 (mg/L)At end of the test (72 hr), <1.0, 68.7, <1.0 (mg/L)

Unit:

mg/L

Results:

(calculated based on nominal concentrations)

(1) Growth inhibition (comparison of area under growth curve)

 EC_{sc} (0-72 h) > 100 mg/L NOEC (0-72 h)> 100 mg/L

(2) Growth inhibition (comparison of growth rates)

 EC_{50} (24-48) > 100 mg/L EC_{50} (24-72) > 100 mg/L NOEC (24-72) > 100 mg/L

Was control response satisfactory:

Yes: Mean cell density increased to 270x10⁶ cells/mL (270-fold increase) after 72 hr for control. Mean cell density increased to 275x10⁶ cells/mL (275-fold increase) after 72 hr for Dispersant control.

Statistical results as appropriate:

Significant difference in the growth curve was not observed between values at 100 mg/L and in each control.

Remarks field for Results:

Biological observations

Cell density at each flask at each measuring point:

Nominal Concentration (mg/L)		Cell Density	(x104 cells/mL)	
_	0 hr	24 hr	48 hr	72 hr
Control	1.0±0.00	6.5±0.50	50.5± 3.48	270.5±23.50
Dspersant Control	1.0±0.00	9.3±1.66	57.5± 9.39	275.2±17.22
1 00	1.0±0.00	16.1±7.82	65.1±12.82	283.3± 7.98
	(Each value	e represents the	mean of three s	sample counts.)

Growth curves: Logarithmic growth until end of the test (72 h).

Percent biomass/growth rate inhibition per concentration: Not described.

Observations: Test group(100mg/L) showed normal and similargrowth to that of control (283 fold increase after 72 hr).

CONCLUSIONS

(1) Growth inhibition (comparison of area under growth curve) EC₅₀ (0.72 h) > 100 mg/L

NOEC (0.72 h) > 100 mg/L

(2) Growth inhibition (comparison of growth rates) EC (24.48) > 100 mg/L

(2) Growth inhibition (comparison of growth rates) EC_{50} (24-48) > 100 mg/L EC_{50} (24-72) > 100 mg/L

NOEC (24-72) > 100 mg/L

DATA QUALITY

Reliabilities:

Klimisch Code: 1=reliable without restrictions.

· Remarks field for Data Reliability:

Experimental design and analytical procedure were well documented.

Carried out by Toray Research Center (Japan).

REFERENCES

Environment Agency of Japan (1998).

- · Last changed:
- · Order number forsorting:
- · Remarks field for GeneralRemarks:

CHRONIC TOXICITY TO AQUATIC INVERTEBRATES (e.g., DAPHNIA) (1)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Nuoplaz 6965

METHOD

• Method:

ASTM and USEPA

Test type:

Flow-through condition

GLP;

Yes

Year:

1984

Analytical procedures:

Yes. Measured by GLC, on 0,4,7,14,21day)

Species/Strain:

Daphnia magna

· Test details:

Dynamic flow-through

Statistical methods:

ANOVA, 2WANOVA, arcsin transformation and Fisher's protected

Least Significant Difference (LSD)

Remarks field for Test Conditions:

Test organisms:

Source; in house culture

Age at study initiation: Juveniles within 24h old. Control group: Yes (control and solvent control)

Test conditions

Dilution Solvent for Concentrated stock standards: Acetone (1.049mg/mL)

A proportional diluter system was used for the intermittent introduction of test

material and dilution water into the test chambers.

Test temperature range: 18-22 °C (average temperature 20°C).

Well water was delivered to the chambers as a minimum rate of 2.0mL/min. Exposure vessel type: 900mL test solution in a 1000 mL glass beaker; 4

beakers per treatment

Dilution water chemistry: Hardness and other characteristics are reported.

Dilution water pH in test: pH=8.3-8.4.

Lighting: 37-74 footcandles, 16h:8h light-darkness cycle Feeding: Algae (Selenastrum capricornutum) three times a day

Supplemented with a trout chow suspension at least twice a week

Element (unit) basis:

Mean cumulative numbers of juveniles produced per adult (reproduction)

Growth (length) of parental Daphnia

Long-term survival

Test design:

Number of replicates=4; individuals per replicate=10;

Method of calculating mean measured concentrations Geometric mean.

Exposure period:

21 d

Analytical monitoring:

By GLC analysis. 33-101% of the nominal concentration at Preparation

RESULTS

Nominal concentrations:

0, 0.0074, 0.012, 0.027, 0.048, 0.100 mg/L

Measured concentrations:

Measured concentration of test chemical during 21-day exposure

Nominal concentration

Measured concentration (day, mg/L)

(mg/L)

0

14

тсал

21

Control			ND	N	D	ND	NI)	ND	ND
Solvent Conta			ND	N	D	ND	N)	ND	ND
0.0074		C	.00328	0.0	00366	0.00558	0.0	0246	0.00482	
0.012		C	.00748	0.0	00626	0.00843	0.0	0478	0.00747	
0.027		O	.0172	0.0	0150	0.0204	0.0	110	0.0157	0.0159
0.048		0	.0305	0.0	0252	0.0371	0.0	176	0.0348	0.029
0.100		0	.0824	0.0	7766	0.0870	0.0	530	0.1011	0.082
Sumulative Nun	nber o	f Dead	Parent	a D api	hnia.					
Nominal conc.	Day	5								
(mg/L)	0	3	5	7	10	12	14	17	19	21
Control	0	0	0	O	0	0	Ø	1	1	2
Solvent Cont.	0	0	0	0	0	1	1	2	3	4
0.0074	0	0	0	0	0	1	1	1	1	1
0.012	0	0	0	0	0	0	0	0	0	0
0.027	O.	0	0	0	0	0	0	0	0	0
0.048	0	0	0	0	1	1	1	1	1	1
0.100	0	0	0	0	0	0	0	0	0	0
Nominal cone. (r Control Solvent Cont. 0.0074		Repl 58.6 59.1	(n=9) (n=7)	R e 5- 5:	(21-d) eplicate 8.4 (u=9) 9.0 (n=1) 8.5 (u=1)) 58. 3) 59.	plicate (8 (n=10) 0 (n=9) 1 (n=9))	Replicate 58.5 (n=1 59.3 (n=1 59.5 (n=1	0) 0)
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100	ng/L)	Repl 58.6 59.1 59.5 59.1 59.8 59.6 58.7	(n=9) (n=7) (n=10) (n=10) (n=10) (n=10)	Re 55 55 55 56 66	eplicate : 8.4 (u=9) 9.0 (n=10) 8.5 (n=10) 9.4(n=10) 8.4 (n=10) 9.6 (n=10) 0.0 (n=10)) 58. 0) 59. 0) 60. 0) 59. 0) 59.	8 (n=10) 0 (n=9))) :) :	58.5 (n=1 59.3 (n=1	0) 0) 0) 0) 0) 0)
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number	ng/L) s of ins	Repl 58.6 59.1 59.5 59.1 59.8 59.6 58.7	(n=9) (n=7) (n=10) (n=10) (n=10) (n=10)	Re 55 55 55 56 66	eplicate : 8.4 (u=9) 9.0 (n=10) 8.5 (n=10) 9.4(n=10) 8.4 (n=10) 9.6 (n=10) 0.0 (n=10)) 58. 0) 59. 0) 60. 0) 59. 0) 59.	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10))) :) :	58.5 (n=1 59.3 (n=1 59.5 (n=1 59.8 (n=1 60.3 (n=1 58.6 (n=1	0) 0) 0) 0) 0) 0)
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number. Nominal cone.	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	Re 55 55 55 56 66 durin	eplicate : 8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 9.6 (n=10) 0.0 (n=10) g 21-d.) 58. 0) 59. 0) 60. 1) 59. 0) 59. 0) 59.	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10))) :) :	58.5 (n=1 59.3 (n=1 59.5 (n=1 59.8 (n=1 60.3 (n=1 58.6 (n=1 59.0 (n=1	0) 0) 0) 0) 0) 0) 0)
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number Nominal cone. (mg/L)	ng/L) s of ins	Repl 58.6 59.1 59.5 59.1 59.8 59.6 58.7	(n=9) (n=7) (n=10) (n=10) (n=10) (n=10)	Re 55 55 55 56 66	eplicate: 8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 8.4 (n=10) 9.6 (n=10) 0.0 (n=10) g 21-d.) 58. 59. 59. 0) 60. 1) 59. 0) 59. 1) 59. 12	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10))) ;)	58.5 (n=1 59.3 (n=1 59.5 (n=1 59.8 (n=1 60.3 (n=1 58.6 (n=1 59.0 (n=1	0) 0) 0) 0) 0) 0) 0) 0)
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number: Nominal cone. (mg/L) Control	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	Re 55 55 55 56 durin , 7	eplicate: 8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 8.4 (n=10) 9.6 (n-10) 0.0 (n=10) 109) 58. 59. 59. 60. 60. 7) 59. 7) 59. 7) 59. 7) 58. 12 12	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10))) ;) 17 86	58.5 (n=1) 59.3 (n=1) 59.5 (n=1) 59.8 (n=1) 60.3 (n=1) 58.6 (n=1) 59.0 (n=1)	0) 0) 0) 0) 0) 0) 0) 21 170
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number Nominal cone. (mg/L)	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	7 - 16	eplicate: 8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 9.6 (n=10) 0.0 (n=10) 109 164) 58. 3) 59. 6) 60. 3) 59. 3) 59. 3) 59. 50) 58. 12 196 178	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10))) = -) :) 17 86 240	58.5 (n=1) 59.3 (n=1) 59.8 (n=1) 60.3 (n=1) 60.3 (n=1) 58.6 (n=1) 59.0 (n=1) 19 179 75	0) 0) 0) 0) 0) 0) 0) 0) 21 170 156
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number Nominal cone. (mg/L) Control Solvent Cont.	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	Re 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 7 . 16 . 3	eplicate : 8.4 (u=9) 9.0 (n=10) 8.5 (u=10) 9.4 (u=10) 8.4 (u=10) 9.6 (n-10) 0.0 (u=10) 109 164 141) 58. 59. 59. 60. 60. 7) 59. 7) 59. 7) 59. 7) 58. 12 12	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10) 14 317	17 86 240 261	58.5 (n=1 59.3 (n=1 59.5 (n=1 59.8 (n=1 60.3 (n=1 58.6 (n=1 59.0 (n=1 19 179 75	0) 0) 0) 0) 0) 0) 0) 0) 0) 21 170 156 274
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean numbers Nominal cone. (mg/L) Control Solvent Cont. 0.0074	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	7 - 16	eplicate: 8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 9.6 (n=10) 0.0 (n=10) 109 164) 58. 59. 59. 0) 60. 7) 59. 0) 59. 1) 59. 12 196 178 202	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10)	17 86 240 261 221	58.5 (n=1) 59.3 (n=1) 59.8 (n=1) 60.3 (n=1) 60.3 (n=1) 58.6 (n=1) 59.0 (n=1) 19 179 75 75 96	0) 0) 0) 0) 0) 0) 0) 0) 0) 21 170 156 274 265
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number Nominal cone. (mg/L) Control Solvent Cont. 0.0074 0.012	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	Re 5. 5. 5. 5. 5. 6. 6. 4 during 7 . 16 . 3 . 3.5	8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 8.4 (n=10) 9.6 (n-10) 0.0 (n=10) 109 164 141 122 150) 58. 59. 60. 60. 7) 59. 7) 59. 7) 59. 7) 58. 12 196 178 202 206 189	8 (n=10) 0 (n=9) 1 (n=9) 2.5 (n=10) 9 (n=10) 7 (n=9) 8 (n=10) 14 317 302 373	17 86 240 261 221 218	58.5 (n=1) 59.3 (n=1) 59.5 (n=1) 59.8 (n=1) 60.3 (n=1) 58.6 (n=1) 59.0 (n=1) 19 179 75 75 96 138	0) 0) 0) 0) 0) 0) 0) 0) 21 170 156 274 265 313
Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean number: Nominal conc. (mg/L) Control Solvent Cont. 0.0074 0.012 0.027	ng/L) s of ins Days	Repl 58.6 59.1 59.8 59.8 59.6 58.7	cate A (n=9) (n=7) (n=10) (n=	Re 5. 5. 5. 5. 5. 6. 6. 4 during 7 . 16 . 3 . 3.5	eplicate: 8.4 (u=9) 9.0 (n=10) 8.5 (u=10) 9.4 (n=10) 8.4 (n=10) 9.6 (n-10) 0.0 (n=10) 100 109 164 141 122) 58. 59. 59. 0) 60. 1) 59. 0) 59. 0) 58. 12 196 178 202 206	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 5 (n=10) 7 (n=9) 8 (n=10) 14 317 302 373 317	17 86 240 261 221	58.5 (n=1) 59.3 (n=1) 59.8 (n=1) 60.3 (n=1) 60.3 (n=1) 58.6 (n=1) 59.0 (n=1) 19 179 75 75 96	0) 0) 0) 0) 0) 0) 0) 0) 0) 21 170 156 274 265
Nominal cone. (r Control Solvent Cont. 0.0074 0.012 0.027 0.048 0.100 Mean numbers Nominal cone. (mg/L) Control Solvent Cont. 0.0074 0.012 0.027 0.048	s of ins Day: 0 - - - -	Repl 58.6 59.1 59.8 59.6 58.7 star pro	cate A (n=9) (n=7) (n=10) (n=	7 - 16 3 3.5 8.3	eplicate: 8.4 (n=9) 9.0 (n=10) 8.5 (n=10) 9.4 (n=10) 9.6 (n-10) 0.0 (n=10) 109 164 141 122 150 113) 58. 3) 59. 6) 60. 7) 59. 8) 59. 9) 59. 12 196. 178 202 206. 189 203	8 (n=10) 0 (n=9) 1 (n=9) 5 (n=10) 5 (n=10) 7 (n=9) 8 (n=10) 14 317 302 373 317 242	17 86 240 261 221 218 120	58.5 (n=1) 59.3 (n=1) 59.8 (n=1) 60.3 (n=1) 60.3 (n=1) 58.6 (n=1) 59.0 (n=1) 19 179 75 75 96 138 233	0) 0) 0) 0) 0) 0) 0) 0) 0) 21 170 156 274 265 313 214

Remarks field for Results:

Biological observations

Cumulative numbers of dead parental Daphnia: Control: 2 (mortality: 5%),

Solv. Cont.: 4 (mortality: 10%) 0.0074 mg/L: 1 (mortality: 2.5%) 0.012 mg/L: 0 (mortality: 0%) 0.027 mg/L: 0 (mortality: 0%) 0.048 mg/L: 1 (mortality: 2.5%)

0.100 mg/ L: 0 (mortality: 0%) Time of the first production of juveniles:Control: 7-10d Solvent control: 5-7d 0.0074 mg/L: 5-7d 0.012 mg/L: 5-7d 0.027 mg/L: 5-7d 0.048 mg/L: 7-10d 0.100 mg/ L: 5-7d Mean cumulative numbers of juveniles produced per adult alive for 21days: Control: 112.7 Solvent control: 168.5

Solvent control: 168.5 0.0074mg/L: 119.6 0.012 mg/L: 139.3 0.027 mg/L: 133.3 0.048 mg/L: 116.0

0.100 mg/L 112.9

Was control response satisfactory: Yes.

CONCLUSIONS

NOEC (21-d, reproduction): 0.082 mg/L, LOEC (21-d, reproduction): >0.082 mg/L, >0.082 mg/L, >ECso (21-d, reproduction): >0.082 mg/L; -LCso for parental Daphnia (21-d): >0.082 mg/L

DATA QUALITY

- Reliabilities:
- Remarks field for Data Reliability:

Experimental design and analytical procedure were well documented. Carried out by Analytical Biochemistry Laboratories, Inc.,

REFERENCES

CMA Doc. I.D. 40-8565036 (1985).

- · Last changed:
- · Order number for sorting :
- Remarks field for GeneralRemarks:

CHRONIC TOXICITY TO AQUATIC INVERTEBRATES (e.g., DAPHNIA) (2)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Tokyo Kasei Kogyo Co., Ltd. Lot No. AX01

Purity: >95.0%

METHOD

• Method:

OECD TG 211 (revised edition of No.202).

Test type:

Semi-static.

• GLP:

Yes

Year:

1998

Analytical procedures:

Yes. Measured by HPLC 2-3 times a week (before and afterthe

replacement of the test water)

Species/Strain:

Daphnia magna

Test details:

Semi-static (water renewal: 3 times a week), open-system.

Statistical methods:

Eco-Statics (Version 1.0 beta-edition R1.4)

Remarks field for Test Conditions:

Test organisms:

Source, supplier, any pre-treatment, breeding method: Supplied by NIES

(Japan).

Age at study initiation: Juveniles within 24h old.

Control group: Yes.

Test conditions

Stock solutions preparation and stability: No solvent used. Test chemical was diluted to 1.0wt.% (with solubilizer HCO-40 1.0wt.% controlled)

with diluting water (Elendt M4) before use. Solubilizer concentration was

controlled 100mg/L with working solution (HCO-40 1.0wt.%). Test temperature range: 19. 9-20.8 °C (average temperature 20°C). Exposure vessel type: 80mL test solution in a 100 mL glass beaker: 10

beakers per treatment

Dilution water source: Elendt M4(OECD guideline No.211 Annex 2)

Dilution water chemistry: Hardness: 251mg/L as CaCO₂

Lighting: <1,200 lx, 16h:8h light-darkness cycle

Water chemistry in test: DO= 7. 0-9.2mg/L; pH=7.4-7.9. Feeding: Chlorella regularis, 0.1-0.2 mgC/day/individual

Element (unit) basis:

Mean cumulative numbers of juveniles produced per adult (reproduction)

Test design: Number of replicates=10; individuals per replicate=10;

Concentrations: 0, 55.6, and 100 mg/L, because 48h-EiC₅₀ for parent Daphnia (Acute immobilization test) was>180 mg/L. Dispersant control

was also tested.

Method of calculating mean measured concentrations:Geometric mean.

Exposure period:

21 d

Analytical monitoring:

By HPLC analysis, 99.7-101.3% of the nominal concentration at

preparation; 94.7-99.3% just before the renewal of the test water (after 2)

days exposure).

RESULTS

- Nominal concentrations: 0, 55.6, 100 mg/L
- Measured concentrations: Time-weighted measured concentrations of test chemical during a 21-day exposure were 54.8 and 98.7 mg/L.

Measured concentration of test chemical during 21-day exposure

Nominal concentration	Measured concentration (day, mg/L)								
(mg/L)	0(new)	2 (old)	7(new)	9(old)	16(new)	19(old)			
Control	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Disp.Cont.	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0			
55.6	56.3	54.4	55.4	53.9	56,3	52.6			
100	100.4	99.3	100.0	98.5	99.8	95.2			

new: freshly prepared test solutions. old: test solution after 2 days exposure.

Unit:

- mg/L
- ·NOEC (21-d, reproduction): 55.6 mg/L,
- ·LOEC (21-d, reproduction): >100 mg/L,
- -ECso (21-d, reproduction): 89.1 mg/L;
- LCso for parental Daphnia (21-d): >100 mg/L; calculated based on nominal concentrations.

Cumulative Number of Dead Parental Daphnia.

Nominal conc.	Da	y 5																			
(mg/L)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Control	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0
Disp.Cont.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55.6	Ū	0	0	0	0	0	0	0	0	Ü	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	1	2	2	2	2

Mean cumulative numbers of juveniles produced per adult during 21-d.

rominai conc.	Days										
(mg/L)	1 2	3 4 5	6 7	8 9	10 11	12	13 14	15 1	6 17	18 19	20 21
Control	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0	1.8 2.2	7.1 7.7	8.2	19.6 20.4	23.2 4	13.8 48.0	0 61.6 83.	0 88.0 88.7
Disp.Cont.	0.0 0.0 0	0.0 0.0 0.	0.0 0.0	0.3 0.3	8.2 8.2	8.7	29.2 31.9	33.0 5	55.8 61.5	5 64.8 72.	0 73.8 73.8
55.6	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0	0.2 1.0	2.0 2.7	5.1	9.3 13.6	26.63	34.4 43.5	9 51.4 66.	2 74.3 79.9
100	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0	0.0 0.0	1.6 2.6	3.6	7.8 9.3	11.0 2	15.1 17.	5 20.3 30.	3 33.0 33.0

Cumulative Number of Juveniles produced per Adult Alive for 21-d.

			Nominal	Concentration(mg/L)
Vessel No.	Cont.	Disp.Cont.	55.6	100.0
1	74	74	68	37
2	57	71	70	25
3	126	92	65	•
4	127	78	96	-
5	90	73	89	36
6	84	70	116	29
7	71	76	78	35
8	94	84	93	28
9	78	75	87	34
10	86	45	37	40
Méan (S.D.)	88.7(22.524)	73.8(12.072)	79.9(21.533) 33.0(5.127)
Inhibition rate(%	(6)	0.832	0.901	0.372

Significant difference*1

•

- -: were not calculated because the parental Daphnia was dead during a 21-days testing period.
- 1*:Indicates a significant difference by Dunnet multiple comparison procedure, Two-sides test.
- **:Indicates a significant difference (alpha=0.01) from the control.

Statistical results as appropriate:

Calculated LC₅₀ Value for Parental Daphnia: LC₅₀(21day) >100(mg/L)

Calculated EC₅₀ value for Inhibition of Reproduction: $EC_{50}(21\text{day}) = 89.1(\text{mg/L})$

(Statistical method: Logit)

Remarks field for Results:

Biological observations

Cumulative numbers of dead parental Daphnia: Control: 0 (mortality: 0%),

Disp.Cont.: 0(mortality: 0%) 55.6 mg/L: 0(mortality: 0%)

100 mg/L: 2 (mortality: 20%)

Time of the first production of juveniles: 8-13d for control

8-12d for dispersant control

8-13d for 55.6 mg/L 10-14d for 100 mg/L

Mean cumulative numbers of juveniles produced per adult alive for 21days:

Control: 88.7, Dispersant control: 73.8

55.6 mg/L: 79.9, 100 mg/L: 33.0

Was control response satisfactory: Yes. Mean cumulative numbers of uveniles produced per

adult was 88.7 and 73.8 > 60.

CONCLUSIONS

·NOEC (21-d, reproduction): 55.6 mg/L,

·LOEC (21-d, reproduction): >100 mg/L,

•ECso (21-d, reproduction): 89.1 mg/L.

•LCs for parental Daphnia (21-d): >100 mg/L; calculated based on nominal concentrations.

DATA QUALITY

• Reliabilities: Klimisch Code: 1=reliable without restrictions.

· Remarks field for Data Reliability:

Experimental design and analytical procedure were well documented.

Carried out by Toray Research Center (Japan).

REFERENCES

Environment Agency of Japan (1998).

- Last changed:
- Order number for sorting:

· Remarks field for GeneralRemarks:

HEALTH ELEMENTS

ACUTE ORAL TOXICITY

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Daihachi Kagaku Kogyo Co., Ltd. Lot. No. N-60601

Purity: >99.0%

Kept at room temperature in a dark place until use. Stability of mixture of

dose was confirmed for 7 days under 4C.

METHOD

Method:

OECD TG 401

Test type:

Single Dose Oral Toxicity Test

GLP:

Yes

Year:

1996

Species:

Rat

Strain:

Crj: CD(SD)

Route of administration: Oral (by single-dose gavage)

Doses/concentration levels: O(vehicle) and 2,000 mg/kg

Sex:

Male & Female

Vehiclæ

Corn oil

Post exposure observation period: Two weeks.

Statistical methods:

Not applicable because of no fatality.

REMARKS FIELD FOR TEST CONDITIONS

Test Subjects:

Age at study initiation: 6 weeks old for both sexes.

Weight at study initiation: 149-163 g for male.

126-140 g for female

No. of animals per sex per dose: 5 per sex per dose group

Study Design:

Vehicle: Com oil. 40.0w/v% for 2000 mg/kg.

Satellite groups and reasons they were added: None

Clinical observations performed and frequency:

Each rat was weighed immediately prior to treatment,7 and 14 days after post-treatment observation period. The rats were observed each hour to 6hr, after that, 2 times for one day during this time for signs of toxicity.

RESULTS

LD₅₀:

Male :> 2,000 mg/kg

Female: > 2.000 mg/kg

REMARKS FIELD FOR RESULTS.

Body weight:

The test substance did not cause any changes in body weight.

No detailed body weight data available.

Food/water consumption:

No detailed data available.

Clinical signs:

Loosening erring of the stool attributable to the treatment with corn oil was observed for 3 hours from the administration for both sexes in the groups given 0 and 2000 mg/kg. However, no deaths occurred of either male or

female animals.

Haematology:

Biochem:

Not done Not done.

Ophthalmologic findings: Not examined.

Mortality and time to death: No deaths were recorded in treated and control group. Gross pathology incidence and severity: No macroscopic abnormalities that could be attributes to

treatment with the test substance were seen on pathological examination.

Organ weight changes:

Not done.

Histopathology (incidence and severity): Not done.

CONCLUSIONS

 LD_{so} was established at > 2,000 mg/kg for both sexes.

DATA QUALITY

Reliabilities:

Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Well conducted study, carried out by the Biosafety Research Center, Food, Drugs and Pesticides (An-pyo Center), Japan

REFERENCES

Toxicity Testing Reports of Environmental Chemicals, vol.4(1996)

Ministry of Health & Welfare, Japan

GENERAL REMARKS

ACUTE INHALATION TOXICITY

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Nouplaz 6959, Batch No. 39049

Purity: 98.95%

METHOD

Method:

Not specified

• GLP:

Yes

· Year:

1982

Species:

Rat

Strain:

Crj: CD(SD)

Doses/concentration levels: 2,600 mg/m³

- Sex:

Male & Female

Post exposure observation period: Two weeks.

Statistical methods:

Not applicable because of no fatality.

REMARKS FIELD FOR TEST CONDITIONS

Test Subjects:

Age at study initiation: Not stated.

Weight at study initiation: 210-275 g for both sexes.

No. of animals per sex per dose: 5 per sex per dose group

Study Design:

Inhalation Chamber: A 0.5m3 stainless steel inhalation chamber was used.

(Youg and Bertke, Cincinnati, Ohio)

The test compound atmosphere was generated directly into the chamber by

means of Jet Nebulizer Mechanism. Chamberconcentrations were

monitored by a filter paper/gravimetric techniquespproximately every 30

min during the exposure period.

The HEPA filtered chamber air-flow was maintained between 10 to 20 air

changes per hour during the exposure period with the chamber under

slightly negative pressure.

The temperature in the chamber was maintained at 69-75 degree F with

relative humidity of 30-50%

Satellite groups and reasons they were added: None

Clinical observations performed and frequency:

After the exposure, all animals were observed daily for 14 days for clinical signs of toxicity. Body weights were recorded prior to exposure and weekly thereafter. All animals were subjected to necropsy at termination of the

study.

RESULTS

LD₂:

Male : > 2,600 mg/m³

Female: $> 2,600 \text{ mg/m}^3$

REMARKS FIELD FOR RESULTS.

Body weight:

The test substance did not cause any changes in hody weight.

Mean body weight(g) of rats exposed to this chemical

 Males
 Initial weight
 265.1(8.40)

 First week
 297.8(14.02)

 Second week
 329.7(15.27)

 Fentales
 Initial weight
 213.9(2.66)

First week 223.2(3.96)

Second week 238.1(4.82) Mean(S.D.)

Food/water consumption: No detailed data available.

Clinical signs: All animals (male and female) had matted, drenched coats for the first 2

days, otherwise no visible signs.

Haematology: Not done

Biochem: Not done.

Ophthalmologic findings: Not examined.

Mortality and time to death: No deaths were recorded.

Organ weight changes: Not done.

General necropsy observations: All males and 3/5 females exhibited reddening patches on lungs.

CONCLUSIONS

LD₀ was 2,600 mg/m³ for both sexes.

DATA QUALITY

• Reliabilities: Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Well conducted study, carried out by Midwest Research Institute.

REFERENCES

Nuodex Inc. Acute inhalation toxicity test in SpragueDawley rats using compoundNouplaz 6959

Environmental Protection Agency (1983)

GENERAL REMARKS

ACUTE DERMAL TOXICITY

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Nouplaz 6959, Batch No. 39049

Purity: 98.95%

METHOD

Method:

Procedure set forth in the Federal Insecticide, Fungicide, and Rodenticide

Act (FIFRA)

• GLP:

Yes

· Year:

1981

Species:

Rabbits

Strain:

New Zealand albino white rabbits

Doses/concentration levels: 2.0 mL/kg

Sex:

Male & Female

Post exposure observation period: Two weeks.

Statistical methods:

Not applicable because of no fatality.

REMARKS FIELD FOR TEST CONDITIONS

Test Subjects:

Age at study initiation: Not stated.

Weight at study initiation: 2.3-3.2 kg for both sexes.

No. of animals per sex per dose: 3 per sex per dose group and 2 per sex

for control.

Study Design:

Procedure: 24 hours prior to treatment the hair on the back of each rabbit was clipped so as to expose approximately 10% of the body surface area. Before dosing, epidermal abrasions were made longitudinally over the exposure area. The abrasions were sufficiently deep to penetrate the

stratum corneum but not so deep as to cause bleeding.

A dosage was applied to the exposure area. A 2 x 2-inch gauze pad was placed on the exposure area to prevent seepage of the compound from the area. Each animal was then wrapped with a rubber dam. After 24 hour of exposure, the rubber dam and gauze pad were removed, and the exposure

area was wiped to remove any remaining test material. Satellite groups and reasons they were added: None Clinical observations performed and frequency:

After the exposure, all animals were observed daily for 14 days for clinical signs of toxicity. A gross necropsy was performed on all animals at the end

of the 14 day observation period.

RESULTS

• LD_{10} :

Male : > 2.0 mL/kg

Female: > 2.0 mL/kg

REMARKS FIELD FOR RESULTS.

Body weight:

The test substance did not cause any changes in body weight.

Individual Animal Boy Weights

	Sex	Body			
Control		day 1	day 7	day 14	
	ma)e	3.2	3,4	3.6	
		3.2	3.4	3.6	
	l'emale	2.7	3.0	3.1	
		2,9	3.1	3.3	
2.0 ml/kg	maje	2.3	2.3	2.5	
		2.4	2.4	2.5	
		2.3	2.2	2.4	
	female	2,3	2.5	2.7	
		2.4	2.6	2.7	
		2.4	2.5	2.6	

Food/water consumption: No detailed data available.

Clinical signs:

No toxic sign.

Haematology:

Not done

Biochem:

Not done.

Ophthalmologic findings: Not examined.

Mortality and time to death: No deaths were recorded.

Organ weight changes:

Not done.

Gross Pathology:

Nothing noted.

CONCLUSIONS

LD₅₀ was 2.0 mL/kg for both sexes.

DATA QUALITY

Reliabilities:

Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Well conducted study, carried out by Midwest Research Institute.

REFERENCES

Nuodex Inc. Acute dermal toxicity test of Tenneco Chemicals Inc. compoun@ouplaz 6959 in

rabbit.

Environmental Protection Agency (1981)

GENERAL REMARKS

SKIN IRRITATION

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Nouplaz TOTM(Tenneco Chemicals, Inc.)

Purity: 98.95%

METHOD

The test method was similar to Section 1500.41.Federal Hazardous Method: Substances Act Regulations - 16 CFR

GLP:

Yes 1981

Vear: Species:

Rabbits

Strain:

New Zealand albino white rabbits

Doses/concentration levels: 0.5 mL

Sex:

Post exposure observation period:24, 72 hours

Statistical methods:

Not applicable because of no fatality.

REMARKS FIELD FOR TEST CONDITIONS

Husbandry Conditions Temperature - 70 ± 2 degree F

Relative Humidity - 45% ± 5% Light - 12 hour light/dark cycle

Diet - Wayne 15% Rabbit Ration and tap water are provided ad libitum. Based on our current knowledge no contaminants are known to be in this diet or water that might be expected to interfere with the objectives of the study.

Caging - Stainless steel with elevated wire mesh flooring 1 rabbit/cage

Bedding - Techbord

Shepherd Products Company Kalamazoo, Michigan 49005

Test method:

A 0.5 mL portion of material was applied to an abraded and an intact akin site on the same rabbit. Gauze patches were then placed over the treated areas and an impervious material was wrapped snugly around the trunks of the animals to hold the patches in place.

The wrapping was removed at the end of the twenty-four (seventy two) hour period and the treated area were examined. The Draize method of

scoring was employed.

Evaluation: Draize Scale For Scoring Reactions

Erythema and Eschar Formation:	Value
No erythema	0
Very slight erythema(barely perceptible)	1
Well defined crythem	2
Moderate to severe erythema	3
Severe erythema (beet redness) to slighteschar formation	
(injuries in depth)	4

Edema Formation	Value
No edema	0
Very slight edema(barely perceptible)	1
Slight edema(edges of area well defined by definite raising)	2
Moderate edema (raised approximately 1 millimeter)	3
Severe edema (raised more than 1 millimater and extending	
beyond the area of exposure)	4

RESULTS

Primary Irritation Score: 4.16/4 = 1.04

REMARKS FIELD FOR RESULTS.

	Reading							
Erythema and Eschar Formation	(Hours)	1	2_	3	4	5_	6	Average
Intact skin	24	2	1	2	1	2	1	1.50
Intact skin	72	ø	0	1	O	Û	0	0.17
Abraded skin	24	2	1	2	1	2	1	1.50
Abraded skin	72	0	0	1	1	ij.	0	0.33
						Subto	เลไ	3.50
Edema Formation								
Intact skin	24	1	0	0	0	1	0	0.33
Intact skin	72	0	0	0	0	0	0	0.00
Abraded skin	24	1	Ð	O	0	1	0	0.33
Abraded skin	72	Ü	ß	0	0	0	0	0.00
				5	Subtot	al	0.66	
						Tot	لها	4.16

CONCLUSIONS

Slightly irritating

This report concluded that TOTM was not a primary skin irritant in rabbit. It is not possible to assign a classification.

DATA QUALITY

Reliabilities:

Klimisch Code: 1= reliable without restrictions.

Remarks field for Data Reliability:

Well conducted study, carried out by Biosearch Inc.

REFERENCES

Nuodex Inc. Primary Skin Irritation - Rabbits. OTS 2065758. Doc ID 878214470,1981

EYE IRRITATION

TEST SUBSTANCE

Remarks:

Identity:

Tris(2-ethylhexyl)bcnzene-1,2,4-tricarboxylate Source: Nouplaz TOTM(Tenneco Chemicals, Inc.)

Purity: 98.95%

METHOD

Method:

The test method was similar to Section 1500.42. Federal Hazardous Substances Act

Regulations - 16 CFR.

• GLP:

Yes

· Year:

1981

Species:

Rabbits

Strain:

New Zealand albino white rabbits

Numbers of animals

6

Doses/concentration levels: 0.1 mL

Sex:

Post exposure observation period: 1,2,3,4,7 days

Statistical methods:

Not applicable because of no fatality.

REMARKS FIELD FOR TEST CONDITIONS

Husbandry Conditions Temperature - 70 ± 2 degree F

Relative Humidity - 45%± 5% Light - 12 hour light/dark cycle

Diet - Wayne 15% Rabbit Ration and tap water are provided ad libitum. Based on our current knowledge no contaminants are known to be in this diet or water that might be expected to

interfere with the objectives of the study.

Caging - Stainless steel with elevated wire mesh flooring 1 rabbit/cage

Bedding - Techbord

Shepherd Products Company Kalamazoo, Michigan 49005

Test method:

0.1 mL of the experimental material was instilled into the right eyes of the test animals while the other eyes remained untreated to severe as controls. The treated eyes were examined at one, two, three, four and seven days

Following instillation of the test materials into the eyes.

Evaluation:

Interpretation of the results was made in accordance with the Draize Scale of Scoring Ocular Lesions.

Scale of Scoring Ocular Lesions

(1) CORNEA

Value range

A. Opacity - Degree of Density(area most dense taken for reading)

B. Area of Cornea Involved

0 - 4 1 - 4

Score equals $A \times B \times 5$ (Total Maximum = 80)

(2) IRIS

A. Values	0 - 2
Score equals A x 5 (Total M	(aximum = 10)
(3) CONJUNCTIVAE	,
A. Redness (refers to palpebral ar	nd bulbar conjunctivae
excluding cornea and iri	0 - 3
B. Chemosis	0 - 4
C. Discharge	0 - 3
Score equals (A+B+C) x 3	-

RESULTS

• Average Ocular IrritationScore: 2.3(1 day), 1.7(2day), 0(3,4,7day)

REMARKS FIELD FOR RESULTS.

			Readin	2		
Rabbit	number Tissue	1 day	2 day		4 day	7day
1	(1) Cornea total	0	0	0	0	0
	(2) Iris total	0	0	0	0	Ð
	(3) Conjunctivae total	2	2	0	0	0
	Total Ocular Irritation Score	2	2	0	0	0
2	(1) Corner total	0	0	0	0	0
	(2) Iris total	0	0	0	0	D
	(3) Conjunctivae total	4	2	0	0	0
	Total Ocular Irritation Score	4	2	0	0	ø
3	(1) Cornea total	D	0	0	Ð	0
	(2) Iris total	0	0	0	0	0
	(3) Conjunctivae total	2	2	0	0	0
	Total Ocular Irritation Score	2	2	0	0	0
4	(1) Cornea total	Ü	0	0	0	0
	(2) Iris total	0	Û	0	0	0
	(3) Conjunctivae total	2	2	0	0	0
	Total Ocular Irritation Score	2	2	0	0	0
5	(1) Cornea total	0	0	D	0	0
	(2) Iris total	0	ð	Ð	0	0
	(3) Conjunctivae total	2	2	0	0	0
	Total Ocular Irritation Score	2	2	0	0	0
6	(1) Cornea total	0	0	0	0	Ó
	(2) Iris total	0	0	0	0	0
	(3) Conjunctivae total	2	0	0	0	0
	Total Ocular Irritation Score	2	0	0	0	0
	Average Ocular Irritation Score	2.3	1.7	0.0	0.0	0.0

CONCLUSIONS

Slightly irritating

This report concluded that TOTM was not a primary skin irritant in rabbit. It is not possible to assign a classification.

DATA QUALITY

• Reliabilities: Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Well conducted study, carried out by Biosearch Inc.

REFERENCES

Nuodex Inc. Primary Eye Irritation - Rabbits. OTS 2065758. Doc ID 878214471,1983

DRAFT ENV/JM/EXCH(99)13

SENSITIZATION

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Nouplaz TOTM(Tenneco Chemicals, Inc.)

Purity: 98.95%

METHOD

Method:

Buehler teat

GLP:

Yes

Year:

1981

Species:

Guinea pig

Strain:

Albino guinea pig

Numbers of animals

Doses/concentration levels: 0.5 mL

Post exposure observation period:10 application

Statistical methods:

Not applicable because of no fatality.

REMARKS FIELD FOR TEST CONDITIONS

Husbandry Conditions Temperature = 70 ± 2 degree F

Relative Humidity $-45\% \pm 5\%$

Light - 12 hour light/dark cycle

Diet - Charless River Guinea Pig Furmula and tap water are provided ad Libitum. Based on our current knowledge no contaminants were Known to be in this diet or water that might be expected to Interfere with the objectives of the study.

Caging - Stainless steel with clevated wire mesh flooring 5 guinea pigs/cage

Bedding - Deotized Animal CageBoard(DACB)

Shepherd Products Company Kalamazoo, Michigan 49005

Test method:

A 0.5 mL portion of material was applied to the intact akin test site on the guinea pigs. A gauze patch was placed over the treated area and an impervious material was wrapped snugly around the trunks of the animals to hold the patches in place. After a 24 hour contact period the patch was removed and the animals were allowed to rest for one day. Following this rest period another application was applied to the same skin site using a fresh sample. After the tenth application the animals were rested for a two week period. At the termination of the rest period a challenge application was put on skin sites differing from the original test sites. The challenge application remained on for 24 hours.

The sites were examined for reaction using the Draize method of scoring to grade reactions.

Evaluation: Draize Scale For Scoring Reactions

Erythema and Eschar Formation:

Value

No erythema

Very slight erythema(barely perceptible)	1
Well defined erythem	2
Moderate to severe erythema	3
Severe erythema (beet redness) to slighteschar formation(injuries	in depth) 4
Edema Formation	Value
No edema	0
Very slight edema(barely perceptible)	1
Slight edema(edges of area well defined by definite raising)	2
Moderate edema (raised approximately 1 millimeter)	3
Severe edema (raised more than 1 millimater and extending	
beyond the area of exposure)	4

RESULTS

No sensitization

REMARKS FIELD FOR RESULTS.

			R	eadir	ig Af	ter A	pplic	catio	n nui	nber		•	Challenge
Guinea pig	No.	1_	2	_3_	_4_	5	6	7	8	9	_10		ırs 48hours
ţ	Erythema	0	0	0	0	0	0	0	0	0	0	0	0
	Edema	0	0	ø	0	0	0	0	Û	0	0	0	a
2	Erythema	0	0	0	0	0	0	0	0	D	0	0	0
	Edema	0	0	0	0	0	0	0	0	0	Ð	0	ñ
3	Erythema	0	0	0	0	D	0	0	0	0	0	0	ň
	Edema	0	0	0	0	0	0	0	0	0	0	O.	o o
4	Erythema	0	0	D	0	0	0	Û	0	0	0	0	Ō
	Edema	0	0	0	0	0	0	0	0	0	0	Ō	0
5	Erythema	0	0	0	0	0	0	Ð	0	0	0	O	0
	Edema	0	0	0	Ð	0	0	0	0	0	Ð	0	0
6	Erythema	0	0	0	0	0	0	0	0	0	0	0	Ò
	Edema	0	0	0	0	0	0	0	0	0	Ð	0	0
7	Erythema	0	0	0	Q	0	Ð	Ü	0	0	0	0	Ō
	Edema	0	O	0	0	0	0	0	0	0	D	0	6
8	Erythema	D	0	0	0	0	0	0	0	0	0	0	0
	Edema	0	0	0	0	0	Ø	0	0	0	0	0	0
9	Erythema	D	ø	0	0	0	0	0	0	0	0	0	0
	Edema	0	0	0	0	0	0	0	0	0	0	0	Õ
10	Erythema	0	0	0	0	0	0	0	0	0	O	0	0
	Edema	6	0	0	0	0	Ð	O	n	ð	6	a a	a .

CONCLUSIONS

No senstization

DATA QUALITY

- Reliabilities: Klimisch Code: 1=reliable without restrictions.
- Remarks field for Data Reliability:

Well conducted study, carried out by Biosearch Inc.

REFERENCES

Nuodex Inc. Guinea Pig Contact Dermal Irritatiom/Sensitization-Modified Buehler Method OTS 206574. Doc ID 878214475,1981

REPEATED DOSE TOXICITY (a)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Nuoplaz 6959

Purity: 98.2% (GC/FID) 97.9% (HPLC)

Impurities were detected at level than 0.1-0.5%, one being di(2-ethylhexyl)

phthalate (DEHP).

METHOD

Method:

BIBRA Standard Operating Procedures

Test type:

Repeat Dose Toxicity

GLP:

Yes 1984

Year: Species:

Rat

Oral

Strain:

Fischer 344

Route of administration

Doses/concentration levels: 0(0), 0.2(184), 0.67(650) and 2(1826) % (mg/kg bw/day)

Vehicle:

Rodent diet

Sex:

Male & Female

Exposure period:

28 days

Frequency of treatment:

Once daily

Control group and treatment: Dietary level 0% and reference compound DEHP 0.67%.

Post exposure observation period: None

Duration of test:

Males and females; for 28 days

Statistical methods:

The control and TOTM treated groups were subject to analysis of

variance, and if this was significant the treated groups were compared with

the controls using the Least Significant Difference test.

The controls and DEHP groups were compared using a two-tailed pooled student t test with Welch's correction. In all cased a probability level of

P<0.05 was taken to indicate statistical significance.

REMARKS FIELD FOR TEST CONDITIONS

Test Subjects:

Age at study initiation: 48-51 days old for males and females

Weight at study initiation: 137-154g for male.

111-132g for female.

No. of animals per sex per dose: 5 Rats per sex per dose group

Study Design:

Vehicle: Diet

Satellite groups and reasons they were added: None Clinical observations performed and frequency:

Body wt. was recorded immediately prior to the first exposure and again for each

animal 1, 3, 7, 10, 14, 17, 21, 24, 27 th days.

Twice each day the animals were observed in their cages forvariations in behaviour or condition, and once weekly a more detailed examination was made at the time of

a weighing.

Food intakes were measured over the period day-3 to 0 and continuos intakes were measured at twice-weekly intervals until the day preceding autopsy. The intakes of test article or reference compound for each animal were calculated twice weekly using the analysed dietary concentrations of TOTM or DEHP, and the individual valued for bodyweight and food intake.

Hematologic parameters were evaluated for each animal. On the day preceding the start of the autopsies a sample of blood was collected from a caudal voin of each animal.

Autopsy: At the end of the 28th day treatment period the rats were deprived of food overnight, with water available. On the day of autopsy each animal was weighted and then killed. The blood was used to provide serum for clinical chemistry. During the autopsy any abnormalities of the external condition and of the thoracic or abdominal viscera were noted.

Organs: The weight of the following organs were recorded: adrenal glands, lungs, brain, ovaries, heart, spleen, kidneys, testes, liver, thyroid.

Electron microscopy: Two thin slices of liver, one from the left lobe, the other from the median lobe, were fixed for analysis. (The remainder of the liver was used for biochemical analysis.)

Biochemical analysis of the liver: Whole homogenates were prepared and assayed for protein and cyanide-insensitive palmitoyl-CoA.

RESULTS

NOAEL

184 mg/kg bw

LOAEL

650 mg/kg bw

REMARKS FIELD FOR RESULTS.

Body weight:

No statistically significant differences of bodyweight between the control and TOTM or DEHP treated groups of either sex. There was a trend for the male rats from all the TOTM treated groups to be lighter than the controls. In the females, this trend was only evident in the 2.0% TOTM group.

Food/water consumption: Female rats fed 2.0% TOTM consumed significantly less diet than the controls during first seven days of treatment after which their intakes increased but remained lower than those of the controls. In the males there were no statistically significant differences between the control and TOTM fed groups during the treatment period.

Haematology: In both sexes haemoglobin concentration of the rats given diet containing 0.67 or 2.0% TOTM were statistically significantly lower than the control. In the males there was a small lowering of erythrocyte count in all groups given TOTM but this was not reproduced in the females.

Both sexes given the two higher dietary concentrations of TOTM had higherleucocyte counts than the control, but the differences were statistically significant only in the males. These male groups also had lower proportions of the leucocytes assosinophils and monocytes.

Significantly lower values for haemotocrit and mean cell volume were limited to females given the two lower dose levels of TOTM.

Organ weights: In both sexes the liver weights, and liver weights relative to bodyweight, were

increased in the TOTM and DEHP treated animals compared to the controls. These differences were small and not statistically significant in the 0.2% TOTM group. The increase seen in the rats given 2.0% TOTM was less than that in those given DEHP. In the males fed TOTM the higher values for brain weights relative to body weight, in the absence of any significant differences in the recorded weight probably reflect the lower bodyweights in the groups concerned. In the females there were statistically significant higher lung weights in the rats fed 0.2 or 0.67% TOTM when compered to the controls. In the case of the TOTM treatedanimals this difference was not dose related and not statistically significant when expressed relative to bodyweight.

Serum analyses: Analysis of serum from the males and females showed statistically significantly increased levels of albumin in the groups given 0.67 or 2.0% TOTM. In the males there were statistically significantly higher cholesterol levels in the 0.67 and 2.0% TOTM groups.

> Concentrations of serum urea were statistically significantly increased in the male 2.0% TOTM group to the control values. In the females there was also an isolated statistically significantly lower value for lipid concentration in the 0.2% TOTM group.

Liver Biochemistry: Neither TOTM or DEHP treatment influenced to a statistically significant degree the concentration of hepatic protein. After TOTM treatmentPCoA activity was statistically significantly higher than controls in both sexes at the highest dose and in the males at the lower two doses. In the groups given TOTM only the highest dose level males had statistically significant increases of enzyme level. Both sexes given 0.67 or 2.0% TOTM had statistically significantly increased carnitine

acetyltransferase activity with little difference between the two sexes.

Histology:

No abnormalities were detected in themajority of the animals. The only lesions occurring with any frequency were focal interstitialpneumonitis and nephrocalcinosis in the females. The observations were not firmly dose related. Thorneumonitis was of limited extent, often only a single focus. Two female rats fed 2.0% TOTM showed reductions in sytoplasmic basophilia in liver although it was only marginal.

Electron Microscopy: In the hepatocytes from the control rats theperoxisomes varied in size from small to moderately large. They had uniformly electron dense contents and some possessed a lattice core. They were ubiquitously distributed throughout the cytoplasm. Feeding diet containing 2% TOTM produced a slight increase in the numbers of peroxisomes, which varied between cells. No difference was seen between the centrilobular and periportal areas.

CONCLUSIONS

The NOAEL for repeated dose toxicity is considered to be 184 mg/kg and the LOAEL is Considered 650 mg/kg for both sexes.

DATA QUALITY

Klimisch Code: 1=reliable without restrictions. Reliabilities:

Remarks field for Data Reliability:

Well conducted study, carried out by the British Industrial Biological Research Associations

DRAFT ENV/JM/EXCH(99)13

REFERENCES

Chemical Manufacturers Association, Project No. 3.0496. Report No. 0496/1/85

CMA Reference. TM-3.0-BT-BIB

REPEATED DOSE TOXICITY (b)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Daihachi Kagaku Kogyo Co., Ltd. Lot. No. N-60601

Purity: >99.0% Kept at room temperature in a dark place until use.

METHOD

Method:

Guidelines for 28-day Repeated Dose Toxicity Testing of Chemicals

(Japan)

Test type:

Repeat Dose Toxicity

GLP:

Yes

Year:

1996 Rat

Species:Strain:

Crj:CD(SD)

• Route of administration

Oral

· Route of administration Of

Doses/concentration levels: 0(vehicle) 100, 300 and 1,000 mg/kg/day

Vehicle:

Com oil

Sex:

Male & Female

Exposure period:

28 days

Frequency of treatment:

Once daily

Control group and treatment: Vehicle (corn oil)

Post exposure observation period:2 weeks for 0 and 1,000 mg/kg/day dose.

Duration of test:

Males and females; for 28 days

Statistical methods:

Bartlett's test, Dunnett's test or Kruskal-Wallis test depending on whether

or not the data were nonhomogeneous or homogeneous.

Fisher 's test for the pathological result. Jonckheere's test for the

correlation of dosage

REMARKS FIELD FOR TEST CONDITIONS

Test Subjects:

Age at study initiation: 6 weeks old for males and females

Weight at study initiation: 130-151g for male.

110-121g for female.

No. of animals per sex per dose: 5 Rats per sex per dose group

Study Design:

Vehicle: Com oil

Satellite groups and reasons they were added: None Clinical observations performed and frequency:

Body wt, was recorded immediately prior to the first exposure and again for each

animal every week

Hematologic parameters were evaluated for each animal. Bloodsamples for the hematologic determinations were taken from abdominal artery in rats after 16 hr fast. Clinical chemistry analyses were performed on serum samples from each animal. Urinalyses were performed for each rat. Urine samples were collected from each rat

on the day prior to scheduled termination.

Organs examined at necropsy:

Organ weight: brain, liver, kidney, spleen, adrenal, spermary (male) and overy

(females) for each animal.

Microscopic: heart, liver, kidneys, spleen, adrenal and bone marrow from rats in the

control and high-exposure groups and kidney from all dosage male.

RESULTS

NOAEL

Male: >1,000 mg/kg/dayFemale: >1,000 mg/kg/day

REMARKS FIELD FOR RESULTS.

The mean body weight of treatment groups of rats for males and females ot Body weight:

Significantly different from controls at any time during the course of the study.

Food/water consumption: No significantly different from controls at any time during dosing and

recovering period for both sexes.

Clinical signs: No unusual clinical observations during the study.

Males:

No dose-related change in general clinical signs. No dose-related change in general clinical signs.

Females: Haematology:

at the end of dosing

Males and females: No dose-related significant changes inhematology.

In the blood clotting test, prothrombin times for males were slightly extended, but they were considered within the physiological change. For females, no significant

changes in all test.

after recovering period

Males:

In hematology, hemoglobin amounts for males at 1000mg/kg dosing were slightly increased, but they were considered within the physiological change. In the blood

clotting test, no significant changes in all tests.

Females:

No significant change in all tests.

Biochem:

at the end of dosing

Males:

No dose-related significant adverse treatment-related effect in clinical chemistry.

Females:

At 300, and 1,000 mg/kg dosing, chlorine contents were low.

after recovering period

Males:

At 1,000 mg/kg dosing, potassium contents were slightly high.

Females:

At 1,000 mg/kg dosing, GOT were slightly high.

But both changes were considered to be no meaning, because at the end of treatment these changes were not recognised.

Urinalysis:

at the end of dosing

Males and Female: At 1,000 mg/kg dosing, some of rats (both sexes), amounts of urinary increased,

but the mean urinary specific gravity values in the 1,000 mg/kg dosing group

was not significant change from control group.

after recovering period:

Males and Females: No dose-related significant change in all tests.

Mortality and time to death: No deaths prior to scheduled termination.

Organ weight changes:

at the end of dosing

Male:

No dose-related change in all tested organs.

Female:

Relative liver weight were slightly increased at 100 mg/kg dosing, but no

dose-related change. Other organs, no significant change.

after recovering period:

Males:

At 1,000 mg/kg dosing, relative kidneyweight were slightly low.

Female:

At 1,000 mg/kg dosing, absolute and relative adrenal weight were lightly

high.

But both changes were considered no related to dosing and recovering of this chemical. Gross pathlogy and histopathlogy:

at the end of dosing:

Males:

Coloured patch/zone of lungs were observed 1 of 100 mg/kg, 2 of 300 mg/kg and 3 animals of 1,000 mg/kg dosing group. Also hypertrophy of the kidney.

hypertrophy of parathyroid, and etc. were observed.

Amounts of eosinophilic body in the kidney were slightly increased in dosing

group. But all these changes were considered no related the dosing and recovering of this chemical, because the degree and rate of changes were same

of all the group included control.

Females:

Red patch/zone of thymus dilated lumen of the uterus and etc. were observed. But all these changes were considered no related the dosing and recovering of this chemical, because the degree and rate of changes were same of all the

group included control.

after recovering period:

Males and Females: No dose-related significant change in all tests.

CONCLUSIONS

No test substance related changes were noted in terms of clinical signs, body weight, food consumption, and hematology, blood chemical examination, urinally sis, and pathological findings.

The NOEL for repeated dose toxicity is considered to be 1,000 mg/kg/day for both sexes.

DATA QUALITY

Reliabilities:

Klimisch Code: 1=reliable without restrictions.

Remarks field for Data Reliability:

Well conducted study, carried out by the Biosafety Research Center, Food, Drugs and Pesticides (An-pyo Center), Japan

REFERENCES

Toxicity Testing Reports of Environmental Chemicals, vol. 4(1996) Ministry of Health & Welfare, Japan

TOXICITY TO REPRODUCTION

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Daihachi Kagaku Kogyo Co., Ltd. Lot. No. N-80301

Purity: >99.0% Kept at room temperature in a dark place until use.

METHOD

Method:

OECD Preliminary reproductive toxicity screening test

Test type:

Preliminary reproduction toxicity screening test.

GLP:

Yes

Year:

1998

Species:

Rat

Strain:

Crj;CD (SD)

Route of administration:

Oral (by gavage)

Doses/concentration levels: 0(vehicle) 100, 300, 1,000 mg/kg/day

Vehicle:

Corn oil

Sex:

Male & Female

Administration period:

Male: for 46 days from 2 weeks prior to mating

Female; from 2 weeks prior to mating to day 3of lactation

Frequency of treatment:

Once daily.

Control group and treatment: Vehicle (corn oil)

Post exposure observation period: None. Terminal kilk

Male: day 47

Female: day 4 of lactation

Statistical methods:

Chi square test for 1 grade positive data and Fisher's test for another. Bartlett's test or Kruskal-Wallis' test for 2 or more grade positive data.

And used Dunnett's test of Mann-Whitney's U-test for examination

REMARKS FIELD FOR TEST CONDITIONS

Test Subjects:

Age at study initiation: 10 week old for both sexes.

Weight at study initiation: 373-435 g for males, 217-257 g for females

No. of animals per sex per dose: 12 per sex per dose group

Study Design:

The animals were sacrificed on the day 4 of lactation for females. Males and

females with nomated were killed 1 day after the mating period. Females with no

delivery killed 26th day of gestation period.

Vehicle: Corn oil

Satellite groups and reasons they were added: None

Mating procedures: Male/female per cage; 1/1, length of cohabitation with in the limit of 14 days until proof of pregnancy (formation sperm detection in vagina)

was observed.

Clinical observations performed and frequency:

Parent: General appearance once a day

Foetus: General appearance once a day after birth

Organs examined at necropsy:

Parent: Males and females: Grosspathlogy of all organs were tested.

Males: Organ weight: Testis and epididymis of all animals.

Female: Organ weight: Ovary of all animals.

Count: Implantation sites and corpus luteum of ovary of all animals.

Microscopic: Males: Testis and epididymis. Count of sertoli sells, spermatocytes, round spermatids and elongatespermatids in seminiferous tubules of 5animals of all dosing groups. (Stage I-VI, VII-VIII, 1X-XI, XII-XIV of spermatozoon formative cycle.)

Females: Ovary

Pup: Gross pathlogy of all organs were tested. Dead pups and abnormal organs were tested histopathogy.

Parameters assessed during study:

Body weight. Males: Prior to the first dosing and 2, 5, 7, 10, 14 day. After that once a week, the daysacrificed. Females: Prior to the first dosing and 2, 5, 7, 10, 14 day. During gestation period, 0, 1,3, 5, 7, 10, 17 and 20 day. During lactation period, 0, 1, and 4. During cohabitation period, the same day with male. Pups: Day 0 and 4

Food/water consumption. The same day when body wt. determined except lactation period and the day sacrificed for males, also, 0 day of gestation and lactation for female.

No. of pairs with successful copulation, copulation index (No.of pairs with Successful copulation/No. of pairs mated) x 100, duration of mating No. of pregnant females, fertility index = (No.of pregnant animals/No. of pairs with successful copulation) x 100, No. of corpora lutea, No. of implantation sites, implantation index (No. of implantation sites/No. of corpora lutea) x 100, No. of pups born, delivery index (No. of pups born/No. of implantation sates) x 100, No. of love pups born, live birth index (No.of love pups born/No. of pups born) x 100, sex ratio of pups, No. of dead pups born, gestation length, gestation index (No. of females with live pops delivered/ No.of pregnant females) x 100, nursing index (No. of females nursing live pups/No.of females with normal delivery) x 100, No. of live pups on day 4, viability index (No. of live pups on day 4/No. of live pups born) x 100,

RESULTS

Repeat dose toxicity: NOEL 100 mg/kg/day for males

1,000 mg/kg/day for female

Reproductive and developmental toxicity: NOEL100 mg/kg/day for males

1,000 mg/kg/day for female 1,000 mg/kg/day for offspring

REMARKS FIELD FOR RESULTS.

Mortality and day of death: None.

Body weight: No statistical significant difference from controls. Food/water consumption: No statistical significant difference from controls.

Reproductive data:

No statistical significant difference from controls.

Pups data :

Body weight and weight gain of 300 mg/kg dosing group for both sexes were slightly low. But all pups of 100 and 1000 mg/kg dosing group were not statistical significant difference from controls.

At the other tests, no statistical significant difference from controls.

Grossly visible abnormalities, external, soft tissue and skeletal abnormalities: For males:

Slightly decrease of spermatocytes and spermatids: 2 animals of 300 mg/kg dosing group.

11 of 1000 mg/kg dosing group.

Moderate decrease of spermatocytes and spermatids: 1 of 1000 mg/kg/dosing group.

At this animal, a few multinucleate giant cell were appeared and slightlyacuolization of sertoli sells were observed. Also, at the epididymis, moderate amount of cell debris moderate decrease of spermatids and slightly granuloms of spermatic were observed. For the control group, atrophy of seminiferous tubulewere observed 2 animals. At these animals, slightly amount of cell debris were observed one of these animals, slight decrease of spermatids was also observed.

Number of cells in seminiferous tubules:

Group 1(Stage I-VI) : Low value of spermatids at 300 mg/kg dosing group.

Low values of spermatocytes and spermatids at 1000 mg/kg dosing group. Group 2(Stage VII-VIII):Low values of round spermatids and ratio of sertoli cells at 1000 mg/kg. Group 3(stage IX-XI):Low values of elongatespermatids and ratio of sertoli cells at 1000 mg/kg. Group 4(stage XII-XIV):Low values of spermatocytes, elongatespermatids, and ratio of sertoli cells at 1000 mg/kg dosing group.

For females:

Cyst of corpus luteum of ovary was observed 2 animals of 300 mg/kg dosing group.

No abnormal ovary observed at the female of 100 mg/kg dosing without successful copulation, females of control and 100 mg/kg dosing without pregnant.

Histopathological finding in rats

			dose	: (mg/kg)	
Items		0	100	300	1,000
No. of male animals examined		12	12	12	12
Organ: Findings					
-	Grade				
Testis:					
Decrease, spermatocyte and spermatid	Total	0	0	2	12**
•	+	0	0	2	11
	+ +	0	0	0	1
Multinuclear glant cell, seminiferous tubu	ıle +	0	0	0	1
Vacuolozation, Sertoli cell	+	0	0	0	1
Atrophy, seminiferous tubule	+	2	0	0	Ō
Epididymis:					
Cell debris, lumen	Total	2	0	0	1
•	+	2	0	0	0
	++	0	0	0	1
Decrease, sperm	Total	1	0	0	1
•	+	1	0	0	0
	4+	0	0	0	1
Granuloma, spermatic	+	0	Ô	0	1
·			*-	Ŭ	-

No. of female animals examined		12 1	12 12	12
Ovary:		•	•	_
Cyst, corpus luteum	<+>	0	0 2	0
Values are no, of animals with f	-	_		
Grade: +=slight, ++=moderate of				
Significantly different from 0 m	g/kg group: **: $p \le 0$.	.01.		
Number of cells in seminiferous tubu	les of male rats.			
Items	0	dose (n 100	ng/Kg) 300	1.600
No. of animals examined	5	5	5	1,000
	_	J	,	5
Group 1 (Stage I-VI) No. of Sertoll cells	20.12/2.19\	10 09/1 40)	18 60/1 455	10.00(4.46)
	20.12(3.18)	19.08(1.49)	18.52(1.45)	18.08(1.45)
Spermatogonia	4.6.60 (F. 66)	20 60/0 600	10 10 20 10	
No.	16.80(5.65)	20.52(2.58)	18.48(3.17)	15.76(2.61)
ratio *)	0.85(0.29)	1.08(0.19)	1.01(0.21)	0.87(0.11)
Spermatocytes	المستعددة	E4 BB/1 B		18.5
No.	50.80(7.44)	51.80(4.84)	42.64(2.63)	40.84(5.63)*
ratio	2.53(0.13)	2.72(0.26)	2.37(0.24)	2.25(0.16)
Round spermatids				
No.	138.36(17.20)	, ,	117.68(5.59)*	· · · /
ratio	6.91(0.35)	6.75(0.84)	6.39(0.70)	6.26(0.48)
Elongate spermatids				
No.	130.00(21.71)		1 r	* 95.36(8.44)**
ratio	6.53(1.15)	5.98 (0.88)	5.62(0.90)	5.30(0.69)
Group 2 (Stage VII-VIII)				
No. of Sertoli cells	16.96(2.63)	17.04(2.17)	16.64(2.73)	16.52(2.23)
Spermatogonia				
No.	2.92(1.06)	2.40(0.93)	2.04(0.68)	2.60(1.10)
ratio	0.18(0.09)	0.14(0.05)	0.12(0.03)	0.16(0.06)
Spermatocytes	()		,	3,25(0.04)
No.	91.68(10.37)	94.68(6.55)	84.44(6.99)	82.32(6.70)
ratio	5,45 (0.56)	5.60(0.51)	5.16(0.79)	5.03(0.54)
Round spermatids	4112 (-122)	()	(, >)	2430 (0.5.)
No.	142.08(13.39)	131.64(13.72)	123.96(8.23)	118.76(8.28)*
ratio	8.45(0.62)	7.75(0.39)	7.66(1.66)	7.25(0.62)*
Elongate spermatids	G.TD(O.GE)	(0.07)	,100(1.00)	1120(U.UZ)
No.	129.24(17.37)	128.32(16.88)	114.72(9.80)	ነበር ደደጠቁ ነጥ
ratio	7.78(1.54)	7.56(0.72)	7.09(1.62)	105.65(13.47) 6.46(1.05)
Tatio	7.70(1.3 4)	(130(0.12)	1.02(1.06)	6.46(1.05)
Group 3 (Stage VII-VIII)				
No. of Sertali cells	19.28(1.92)	20.52(1.55)	19.20(1.58)	19.32(2.18)
Spermatogonia				•
No.	4.52(1.32)	4.20(1.50)	4.92(1.63)	3.32(1.02)
ratio	0.23(0.05)	0.21(0.08)	0.26(0.11)	0.18(0.05)
Spermatocytes	` ,	. ,	, ,	` /
No.	102.52(10.83)	99.08(8.42)	97.56(4.50)	89.04(9.00)
ratio	5.34(0.56))	4.85(0.50)	5.10(0.36)	4.62(0.32)
Elongate spermatids			- / (0.2.5)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
No.	145.24(11.01)	130.64(9.90))	131.68(19.71)	119.24(15.90*
	A マジ・ケフ! よよ・ひよう	エール・ベー・イン・ノン	a シェ・マンしょブ・ノエ)	ユエノ・チョリ エジ・ブリ

Group 4 (Stage VII-VIII)			_	
No. of Sertoli cells	19.16(2.81)	20.92(1.73)	18.64(1.72)	16.72(0.92)
Spermatogonia	* -	*	,	* /
No.	4.04(0.89)	3.72(0.72)	3.64(0.48)	3.64(0.71)
ratio	0.21(0.05)	0.18(0.03)	0.20(0.02)	0.22(0.05)
Spermatocytes	* *	•	` ,	
No.	109.80(13.15)	110.36(9.22)	99.44(4.54)	88.76(4.33)**
ratio	5.76 (0.29)	5.28(0.12)	5.36(0.34)	5.32(0.46)
Elongate spermatids	. ,	, ,		• •
No.	159.76(15.91)	150.28(18.99)	137.08(17.70)	105.16(18.34)**
ratio	8.39(0.63)	7.19(0.71)	7.35(0.62)	6.33(1.31)**
Maria and the second of the se	• •	, ,	٠ ٠	* /

Values are expressed as Mean(S.D.)

Significantly different from 0 mg/kg group; * p≤0.05, ** p≤0.01

a): (No. of spermatogenic cells/no. of sertoli cells in a seminiferous tubule)

Influence on reproductive performances of rats

	dose (mg/kg)						
Items	0	100	300	1,000			
No. of male animals examined	12	12	12	12			
No. of pairs with successful copulation	12	12	12	12			
Duration of mating (day, Mean, (SD))	2.1(1.2)	2.3(1.3)	2.7(1.2)	2.7(1.1)			
Copulation index(%)*	100.0	91.7	100.0	100.0			
No. of pregnant animals	11	10	12	12			
Fertility index(%)**	91.7	90.9	100.0	100.0			

^{* (}No.of pairs with successful copulation/no.of pairs mated) x 100

Influence on developmental performances of rats

		dose (n	ig/kg)		
Items	0	100	300	1,000	
No. of male animals examined	12	12	12	12	
No. of corpora lutea	16.8(1.5)	17.3(1.3)	17.0(2.3)	17.9(2.2)	
No. of implantation sites	15.5(1.7)	16.6(1.3)	16.0(2.0)	16.3(2.3)	
Implantation index(%) *)	92.5(7.2)	96.2(6.6)	94.5(8.4)	91.3(8.8)	
No. of pups born(%)	13.7(3.1)	15.0(1.7)	15.0(1.8)	15.1(2.7)	
Delivery index(%) b	87.6(15.4)	90.3(6.8)	94.1(7.2)	92.2(9.6)	
Live pups born					
No.	13.3(2.9)	14.7(2.0)	14.9(2.0)	15.0(2.7)	
Live birth index(%) *)	97.1(5.6)	97.8(3.6)	99.2(2.6)	99.4(2.1)	
Sex ratio(M/F)	1.09(0.69)	1.05(0.50)	1.17(0.75)	0.76(0.44)	
Dead pups born				, ,	
No.	0.5(0.9)	0.3(0.5)	0.1(0.3)	0.1(0.3)	
Gestation length(day)	22.7(0.5)	22.7(0.5)	22.5(0.5)	11.6(0.5)	
Gestation index(%) *	100.0	100.0	100.0	100.0	
Nursing index(%) 4	100.0	100.0	100.0	100.0	
Live pups on day 4					
No.	13.2(2.8)	14.6(2.1)	14.4(2.9)	14.5(2.9)	
Viability index(%) ⁶	99.5(1.8)	99.3(2.3)	95.6(11.5)	96.7(6.7)	
Body weight of pups(g)					
Male Day 0	7.32(0.77)	7.13(0.52)	6.69(0.55)	6.87(0.84)	
Day 4	11.71(1.76)	11.09(0.93)	10.23(0.98)*	10.60(1.47)	
Day 0-4, gain(g)	4.39(1.04)	3.96(0.53)	3.54(0.77)*	3.73(0.80)	
Body weight gain(%) v	59.41(8.87)	55.54(6.16)	53.19(11.91)	54.39(9.50)	

^{**(}No. of pregnant animals/no. of pairs with successful copulation) x 100

Female	Day 0	6.93(0.83)	6.63(0.64)	6.33(0.58)	6.58(0.62)
	Day 4	11.08(1.71)	10.28(1.01)	9.84(1.01)*	10.03(1.46)
	Day 0-4, gain(g)	4.16(1.00)	3.65(0.56)	3.14(0.79)*	3.46(0.96)
	Body weight gain(%)	59.63(10.42)	55.24(8.07)	49.95(13.09)	52.17(11.10)

Values are expressed as Mean (S.D.)

Significantly difference from 0 mg/kg group; $p \le 0.05$

- a): (No. of implantation sites/no. of corpora lutea) x 100
- b): (No. of pups born/no. of implantation sites) x 100
- c): (No. of live pups born/no. of pups born) x 100
- d): (No. of females with live pups delivered/ no. of pregnant remales) x 100
- e): (No. of females nursing live pups/no. of females with normal delivery) x 100
- f): (No. of live pups on day 4/ no. of live pups born) x 100
- g): (Body weight gain/body weight on day 0) x 100

CONCLUSIONS

Repeat dose toxicity

Histopathological examination of the testes, demonstrated decrease of permatocytes and spermatids in males of the 300 and 1000 mg/kg group. No effects of this chemical on general appearance, body weight, food consumption, autopsy findings, weights of the reproductive organs of both sexes, or histopathlogical features of the ovary were detected.

The NOELs are considered to be 100 mg/kg/day for males, and 1,000 mg/kg/day for females.

Reproductive and developmental toxicity

Except for the effects in males observed onhistopathological examination, no influence of this chemical was detected regarding reproductive ability, organ weight orbistopathological feature of the ovary, delivery or maternal behaviour of dams. No effects of this chemical were detected orbisbility, general appearance, body weights or autopsy findings for offspring.

The NOELs are considered to be 100 mg/kg/day for males, 1,000 mg/kg/day for females, and 1,000 mg/kg/day for offspring.

DATA QUALITY

- Reliabilities: Klimisch Code: 1=reliable without restrictions.
- Remarks field for Data Reliability:

Well conducted study, carried out by the Safety Research Institute for Chemical Compounds Co., Ltd.(Japan)

REFERENCES

Toxicity Testing Reports of Environmental Chemicals, vol. 6(1998)

Ministry of Health & Welfare, Japan

DRAFT ENV/JM/EXCH(99)13

GENETIC TOXICITY IN VITRO (BACTERIAL TEST)

TEST SUBSTANCE

Identity:

Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate

Remarks:

Source: Daihachi Kagaku Kogyo Co., Ltd. Lot. No. N-60601

Purity: >99.0% Kept at room temperature in a dark place until use.

METHOD

Method:

Guideline for ScreeningMutagenicity Testing of Chemicals (Japan) and

OECD TG 471 and 472

Test type:

Reverse mutation assay

GLP: Year: Yes

1996

Species/Strain:

Salmonella typhimurium TA100, TA1535, TA98, TA1537

Escherichia coli WP2 uvrA

Positive controls:

-S9 mix, 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide (TA100, WP2, TA98)

Sodium azide (TA1535)

9-Aminoacridine (TA 1537)

+S9 mix, 20Aminoanthracene (five strains)

S9:

Rat liver, induced with phenobarbital and 5,6-benzoflavone

Statistical methods

No statistical analysis was done.

REMARKS FIELD FOR TEST CONDITIONS

Study Design:

Concentration: -S9: 0, 313, 625, 1,250, 2,500, 5,000 ug/plate (five strains)

+S9: 0, 313, 625, 1,250, 2,500, 5,000 ug/plate (five strains)

Number of replicates: 2

Plates/test: 3

Procedure: Plate incorporation method

Solvent: Acetone Positive controls:

-S9 mix, 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide (TA100, WP2, TA98)

Sodium azide (TA1535) 9-Aminoacridine (TA 1537)

+S9 mix, 20Aminoanthracene (five strains)

RESULTS

Cytotoxic concentration:

Toxicity was not observed up to 5000 ug/plate in five strains with and without metabolic activation (S9 mix).

Genotoxic effects:
With metabolic activation: [] [] [x] Without metabolic activation: [] [] [x]
REMARKS FIELD FOR RESULTS.
CONCLUSIONS
Bacterial gene mutation is negative with and without metabolic activation.
DATA QUALITY
Reliabilities: Valid without restriction.
Remarks field for Data Reliability
Well conducted study, carried out by Hatano Research Institute, Food and Drug Safety Center (Hadano, Japan).
REFERÊNCES
Toxicity Testing Reports of Environmental Chemicals,vol.4(1996)
Ministry of Health & Welfare, Japan
GENERAL REMARKS

REMARKS FIELD FOR RESULTS.

GENETIC TOXICITY IN VITRO (NON-BACTERIAL IN VITRO TEST)

TEST SUBSTANCE Identity: Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate Remarks: Source: Daihachi Kagaku Kogyo Co., Ltd. Lot. No. N-60601 Purity: >99.0% Kept at room temperature in a dark place until use **METHOD** Guideline for Screening Toxicity Testing of Chemicals (Japan) Method: Chromosomal aberration test Test type: Yes GLP: 1996 Year: Species/Strain: CHL/IU cell Metabolic activation: with and without S9 from rat liver, induced withphenobarbital and 5.6-benzoflavone. Statistical methods Fisher's exact analysis REMARKS FIELD FOR TEST CONDITIONS Study Design: For continuous treatment, cells were treated for 24 or 48 hrs without S9. For short-term treatment, cells were treated for 6 hrs with and without S9 and cultivated with fresh media for 18 hrs. Concentration: -S9 (continuous treatment): 0, 1.3, 2.5, 5.0 mg/mL -S9 (short-term treatment): 0, 1.3, 2.5, 5.0 mg/ml. +S9 (short-term treatment): 0, 1.3, 2.5, 5.0 mg/mL Plates/test: 2 Solvent: Acetone Positive controls: Mitomycin C for continuous treatment Cyclophosphamide for short-term treatment RESULTS Cytotoxic concentration: Toxicity was not observed up to 5.0 mg/ml in continuous and short-term treatment with or without \$9 mix. Genotoxic effects: Clastogenicity polyploidy With metabolic activation: [] [x] Without metabolic activation: [] [] [x]

GENETIC TOXICITY IN VITRO (NON-BACTERIAL IN VITRO TEST) TEST SUBSTANCE Identity: Tris(2-ethylhexyl)benzene-1,2,4-tricarboxylate Remarks: Source: Daihachi Kagaku Kogyo Co., Ltd. Lot. No. N-60601 Purity: >99.0% Kept at room temperature in a dark place until use **METHOD** Method: Guideline for Screening Toxicity Testing of Chemicals (Japan) Chromosomal aberration test Test type: GLP. Yes Year: 1996 Species/Strain: CHL/IU cell Metabolic activation: with and without S9 from rat liver, induced withphenobarbital and 5.6-benzoflavone. Statistical methods Fisher's exact analysis REMARKS FIELD FOR TEST CONDITIONS Study Design: For continuous treatment, cells were treated for 24 or 48 hrs without \$9. For short-term treatment, cells were treated for 6 hrs with and without S9 and cultivated with fresh media for 18 hrs. Concentration: -S9 (continuous treatment): 0, 1.3, 2.5, 5.0 mg/mL -S9 (short-term treatment): 0, 1.3, 2.5, 5.0 mg/ml. +S9 (short-term treatment): 0, 1.3, 2.5, 5.0 mg/mL Plates/test: 2 Solvent: Acetone Positive controls: Mitomycin C for continuous treatment Cyclophosphamide for short-term treatment RESULTS Cytotoxic concentration: Toxicity was not observed up to 5.0 mg/ml in continuous and short-term treatment with or without \$9 mix. Genotoxic effects: Clastogenicity polyploidy With metabolic activation: [] [x]

66

Without metabolic activation: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

REMARKS FIELD FOR RESULTS.

Appendix I Parameters used in caluculation of distribution by Mackay level III fugacity model.

Physico-chemical Parameter for TOTM

			<u> </u>
molecu	lar weight	546.79	Measured
melting _l	point [°C]	-50	Measured
vapor pr	essure [Pa]	2.80E-04	Estimated
water solu	bility [g/m³]	0.13	Measured
log	Kow	5.94	Measured
	in air	12	Estimated
half life [h]	in water	288	Estimated
	in soil	288	Estimated
	in sediment	864	Estimated

Temp. [°C] 25

Environmental Parameter

		Volume	depth	агеа	organic	lipid content	density	residence
		[m³]	[m]	[m²]	carbon[-]	[-]	[kg/m³]	time [h]
	air	1.0E+13					1.2	100
bulk air	particles	2.0E+03						
	total	1.0E+13	1000	1E+10				
	water	2.0E+10					1000	1000
bulk water	particles	1.0E+06			0.04		1500	
	Fish	2.0E+05				0.05	1000	
	Total	2.0E+10	10	2E+09				
	Air	3.2E+08					1.2	
bulk soil	Water	4.8E+08					1000	
	Solid	8.0E+08			0.04		2400	
	Total	1.6E+09	0.2	8E+09				
bulk	Water	8.0E+07					1000	
sediment	Solid	2.0E+07			0.06		2400	50000
	Total	1.0E+08	0.05	2E+09				

Intermadea Transport Parameter (m/h)

air side air-water MTC	5	soil air boundary layer MTC	5
water side air water MTC	0.05	sediment-water MTC	1E-04
rain rate	1E-04	sediment deposition	5E-07
aerosol deposition	6E-10	sediment resuspension	2E-07
soil air phase diffusion MTC	0.02	soil water runoff	5E-05
soil water phase diffusion MTC	1 E -05	soil solid runoff	1E-08

Theoretical Distribution of TOTM

scenario 1

	emission rate	conc.	amount	percent [%]	Transformation rate [kg/h]	
	[kg/h]	$[g/m^3]$	[kg]		Reaction	advection
Air	1,000	1.3.E-07	1.3.E+04	19.6	7.5E+02	1.3.E+02
Water	0	1.6.E-05	3.10.E+03	4.7	7.6E+00	3.1.E+00
Soil	0	2.5.E-03	4.4,E+04	66.2	1.1E+02	_
Sediment		1.3.E-02	6.3.E+03	9.5	5.1E+00	1.2.E-01
		total amount	6.7.E+04			

scenario 2

	Emission rate	conc.	Amount	percent [%]	Transformation rate [kg/h]	
•	[kg/h]	[g/m³]	[kg]		Reaction	advection
air	0	1.8.E-09	1.8.E+02	0.0	1.0.E+01	1.8. E +00
water	1000	9.7.E-04	1.9.E+05	32.7	4.7.E+02	1.9. E +02
soil	0	3.4.E-05	6.2.E+02	0.1	1.5.E+00	
sediment		7.9.E-01	3.9.E+05	67.2	3.2.E+02	7.9.E+00
		total amount	5.9. E +05			

DRAFT ENV/JM/EXCH(99)13

scenario 3

	emission rate	conc.	Amount	percent [%]	Transformation rate [kg/h]	
,	[kg/h]	[g/m³]	[kg]		Reaction	advection
air	0	7.0.E-13	7.0.E-02	0.0	4.1.E-03	7.0.E-04
water	0	5.2.E-08	1.0.E+01	0.0	2.5.E-02	1.0.E-02
soil	1000	2.3.E-02	4.2.E+0 <i>5</i>	100.0	1.0.E+03	
sediment		4.2.E-05	2.1.E+01	0.0	1.7.E-02	4.2.E-04
		total amount	4.2.E+05			

scenario 4

	emission rate	conc.	Amount	percent [%]	Transformation rate [kg/h	
	[kg/h]	[g/m³]	[kg]		Reaction	advection
air	600	7.8.E-08	7.8.E+03	3.0	4.5.E+02	7.8.E+01
water	300	3.0.E-04	6.0.E+04	23.5	1.5.E+02	6.0.E+01
soil	100	3.8.E-03	6.8.E+04	26.6	1.6.E+02	
sediment		2.4.E+01	1.2.E+05	46.9	9.8.E+01	2.4.E+00
		total amount	2.6.E+05			